@kazuph/mcp-taskmanager 精选
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
Tools
request_planning
Register a new user request and plan its associated tasks. You must provide 'originalRequest' and 'tasks', and optionally 'splitDetails'. This tool initiates a new workflow for handling a user's request. The workflow is as follows: 1. Use 'request_planning' to register a request and its tasks. 2. After adding tasks, you MUST use 'get_next_task' to retrieve the first task. A progress table will be displayed. 3. Use 'get_next_task' to retrieve the next uncompleted task. 4. **IMPORTANT:** After marking a task as done, the assistant MUST NOT proceed to another task without the user's approval. The user must explicitly approve the completed task using 'approve_task_completion'. A progress table will be displayed before each approval request. 5. Once a task is approved, you can proceed to 'get_next_task' again to fetch the next pending task. 6. Repeat this cycle until all tasks are done. 7. After all tasks are completed (and approved), 'get_next_task' will indicate that all tasks are done and that the request awaits approval for full completion. 8. The user must then approve the entire request's completion using 'approve_request_completion'. If the user does not approve and wants more tasks, you can again use 'request_planning' to add new tasks and continue the cycle. The critical point is to always wait for user approval after completing each task and after all tasks are done, wait for request completion approval. Do not proceed automatically.
get_next_task
Given a 'requestId', return the next pending task (not done yet). If all tasks are completed, it will indicate that no more tasks are left and that you must wait for the request completion approval. A progress table showing the current status of all tasks will be displayed with each response. If the same task is returned again or if no new task is provided after a task was marked as done but not yet approved, you MUST NOT proceed. In such a scenario, you must prompt the user for approval via 'approve_task_completion' before calling 'get_next_task' again. Do not skip the user's approval step. In other words: - After calling 'mark_task_done', do not call 'get_next_task' again until 'approve_task_completion' is called by the user. - If 'get_next_task' returns 'all_tasks_done', it means all tasks have been completed. At this point, you must not start a new request or do anything else until the user decides to 'approve_request_completion' or possibly add more tasks via 'request_planning'.
mark_task_done
Mark a given task as done after you've completed it. Provide 'requestId' and 'taskId', and optionally 'completedDetails'. After marking a task as done, a progress table will be displayed showing the updated status of all tasks. After this, DO NOT proceed to 'get_next_task' again until the user has explicitly approved this completed task using 'approve_task_completion'.
approve_task_completion
Once the assistant has marked a task as done using 'mark_task_done', the user must call this tool to approve that the task is genuinely completed. Only after this approval can you proceed to 'get_next_task' to move on. A progress table will be displayed before requesting approval, showing the current status of all tasks. If the user does not approve, do not call 'get_next_task'. Instead, the user may request changes, or even re-plan tasks by using 'request_planning' again.
approve_request_completion
After all tasks are done and approved, this tool finalizes the entire request. The user must call this to confirm that the request is fully completed. A progress table showing the final status of all tasks will be displayed before requesting final approval. If not approved, the user can add new tasks using 'request_planning' and continue the process.
open_task_details
Get details of a specific task by 'taskId'. This is for inspecting task information at any point.
list_requests
List all requests with their basic information and summary of tasks. This provides a quick overview of all requests in the system.
add_tasks_to_request
Add new tasks to an existing request. This allows extending a request with additional tasks. A progress table will be displayed showing all tasks including the newly added ones.
update_task
Update an existing task's title and/or description. Only uncompleted tasks can be updated. A progress table will be displayed showing the updated task information.
delete_task
Delete a specific task from a request. Only uncompleted tasks can be deleted. A progress table will be displayed showing the remaining tasks after deletion.
README
MCP 任务管理器
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
<a href="https://glama.ai/mcp/servers/bdjh7kx05h"><img width="380" height="200" src="https://glama.ai/mcp/servers/bdjh7kx05h/badge" alt="@kazuph/mcp-taskmanager MCP server" /></a>
快速开始(用户)
前提条件
- Node.js 18+ (通过
brew install node
安装) - Claude Desktop (从 https://claude.ai/desktop 安装)
配置
- 打开您的 Claude Desktop 配置文件,位于:
~/Library/Application Support/Claude/claude_desktop_config.json
您可以通过 Claude Desktop 菜单找到它:
-
打开 Claude Desktop
-
点击 Mac 菜单栏上的 Claude
-
点击 "Settings"(设置)
-
点击 "Developer"(开发者)
-
将以下内容添加到您的配置中:
{
"tools": {
"taskmanager": {
"command": "npx",
"args": ["-y", "@kazuph/mcp-taskmanager"]
}
}
}
开发者
前提条件
- Node.js 18+ (通过
brew install node
安装) - Claude Desktop (从 https://claude.ai/desktop 安装)
- tsx (通过
npm install -g tsx
安装)
安装
git clone https://github.com/kazuph/mcp-taskmanager.git
cd mcp-taskmanager
npm install
npm run build
开发配置
-
确保 Claude Desktop 已安装并正在运行。
-
如果您还没有全局安装 tsx:
npm install -g tsx
# 或
pnpm add -g tsx
- 修改您的 Claude Desktop 配置文件,位于:
~/Library/Application Support/Claude/claude_desktop_config.json
将以下内容添加到您的 MCP 客户端配置中:
{
"tools": {
"taskmanager": {
"args": ["tsx", "/path/to/mcp-taskmanager/index.ts"]
}
}
}
可用操作
TaskManager 支持两个主要的操作阶段:
计划阶段
- 接受来自用户的任务列表(字符串数组)
- 在内部将任务存储为队列
- 返回执行计划(任务概述、任务 ID、当前队列状态)
执行阶段
- 在请求时从队列中返回下一个任务
- 提供任务完成的反馈机制
- 从队列中删除已完成的任务
- 准备下一个任务以供执行
参数
action
: "plan" | "execute" | "complete"tasks
: 任务字符串数组("plan" 操作必需)taskId
: 任务标识符("complete" 操作必需)getNext
: 请求下一个任务的布尔标志("execute" 操作必需)
使用示例
// 计划阶段
{
action: "plan",
tasks: ["Task 1", "Task 2", "Task 3"]
}
// 执行阶段
{
action: "execute",
getNext: true
}
// 完成任务
{
action: "complete",
taskId: "task-123"
}
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
JSON Resume MCP Server
一个服务器,通过分析您的代码项目来增强 AI 助手的能力,使其能够更新您的 JSON 简历,自动提取技能并生成专业的描述。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。