1、前言

1、前言

MCP服务器示例

AndyM129

开发者工具
访问服务器

README

logo

详见原文,以获得最新的内容:【AI入门】MCP 初探 - 掘金


1、前言

大模型火了一阵子了,最近又火了一个技术 —— MCP

在看了一些介绍后,恰巧之前通过 Ollama 也部署了本地大模型,正好可以试试本地 MCP,兴许可以「以后 自己开发些 MCP,然后通过本地大模型调用」,这样就能摆脱 UI、Terminal 来执行特定的操作了~~

2、准备

2.1、安装 Ollama

访问 Ollama 官网: https://ollama.com/download ,下载需要的版本,并安装: image-20250413152913247

安装指定的大模型: image-20250413152923270

【PS】我目前在本地安装了以下几个大模型:

$ ollama list
NAME                       ID              SIZE      MODIFIED
mistral-small3.1:latest    b9aaf0c2586a    15 GB     12 minutes ago
phi4:latest                ac896e5b8b34    9.1 GB    7 weeks ago
deepseek-r1:14b            ea35dfe18182    9.0 GB    8 weeks ago
bge-m3:latest              790764642607    1.2 GB    8 weeks ago
deepseek-r1:32b            38056bbcbb2d    19 GB     8 weeks ago
llama3.2:latest            a80c4f17acd5    2.0 GB    8 weeks ago

2.2、安装 CherryStudio

这是一个本地大模型的客户端,以便配合 Ollama 来使用本地大模型

访问官网 https://docs.cherry-ai.com/cherry-studio/download ,下载需要的版本,并安装: image-20250413152932729

3、安装、开发 MCP

以下内容,以通过 Python 开发为例进行介绍。

3.1、安装 UV

uv 是一个 MCP 推荐的 Python 包管理工具,可以参考其官网 进行安装: https://docs.astral.sh/uv/getting-started/installation/#installation-methods

我的安装方式&过程如下:

$ wget -qO- https://astral.sh/uv/install.sh | sh
downloading uv 0.6.14 aarch64-apple-darwin
no checksums to verify
installing to /Users/mengxinxin/.local/bin
  uv
  uvx
everything\'s installed!

To add $HOME/.local/bin to your PATH, either restart your shell or run:

    source $HOME/.local/bin/env (sh, bash, zsh)
    source $HOME/.local/bin/env.fish (fish)
WARNING: The following commands are shadowed by other commands in your PATH: uv uvx


$ uv version
uv 0.6.14 (a4cec56dc 2025-04-09)

3.2、创建&初始化一个 MCP项目

# 初始化项目
$ uv init hello_mcp_server

# 进入项目目录
$ cd hello_mcp_server

# 创建环境
$ uv venv

# 激活环境
$ source .venv/bin/activate

# 安装依赖
$ uv add "mcp[cli]"

3.3、开发&调试 MCP

示例代码如下:

from mcp.server.fastmcp import FastMCP
from pydantic import Field


# Initialize FastMCP server
mcp = FastMCP("hello-mcp-server", log_level="ERROR")


# 注册工具的装饰器,可以很方便的把一个函数注册为工具
@mcp.tool()
async def hello_mcp_server(username: str = Field(description="用户名")) -> str:
    """当用户向 MCP 打招呼时,调用此工具

    Args:
        username: 用户名

    Returns:
        回复用户的问好
    """
    return f"Hello, {username},我是 MCP 示例!"


def main():
    print("Hello from hello-mcp-server!")


if __name__ == "__main__":
    main()

执行如下名,可获得调试地址:

$ mcp dev hello_mcp_server.py
Starting MCP inspector...
⚙️ Proxy server listening on port 6277
🔍 MCP Inspector is up and running at http://127.0.0.1:6274 🚀

在浏览器中访问该调试地址: http://127.0.0.1:6274 ,并点击 Connect: image-20250413152946973

然后如图操作、验证工具: image-20250413152955931

4、接入 CherryStudio

4.1、添加 MCP 服务器

image-20250413153006995

4.2、设置大模型

image-20250413153016232

4.3、在对话中启用 MCP 服务器

image-20250413153025004

4.4、完成,试一下吧~

image-20250413153031450

以上,搞定,收工~ ✌🏻

推荐服务器

Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
MCP Package Docs Server

MCP Package Docs Server

促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。

精选
本地
TypeScript
Claude Code MCP

Claude Code MCP

一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。

精选
本地
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。

精选
本地
JavaScript
mermaid-mcp-server

mermaid-mcp-server

一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。

精选
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

精选
TypeScript
Linear MCP Server

Linear MCP Server

一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

精选
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Curri MCP Server

Curri MCP Server

通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。

官方
本地
JavaScript