1mcpserver

1mcpserver

MCP of MCPs. Automatic discovery and configure MCP servers on your local machine. Integration with Claude and Cursor.

Category
访问服务器

README

1 MCP Server: A MCP server that picks and configures MCP servers for you

We aim at providing only this MCP server. Then you can leave all the rest (searching servers, selecting servers, configuring servers, etc) all to this MCP server.

No need to run setup commands, no need to acquire api keys. Just need to modify one file.

Demo video: https://youtu.be/Kv2HgD9hRZ8

Set up Instruction

Simple remote setup: integration with Cursor and Claude (Option 1)

Add the following to curson or claude MCP config file.

For Cursor: Open ~/.cursor/mcp.json

For Claude: Open

  • macOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Add the following to the file:

{
  "mcpServers": {
    "mcp-server-discovery": {
      "url": "http://fastmcp.pfvc.io/mcp",
      "headers": {
        "Accept": "text/event-stream",
        "Cache-Control": "no-cache",
        "API_KEY": "value"
      }
    }
  }
}

If you are already using other servers, the json file should look like this

{
    "mcpServers": {
        "mcp-server-discovery": {
            "url": "http://fastmcp.pfvc.io/mcp",
            "headers": {
                "Accept": "text/event-stream",
                "Cache-Control": "no-cache",
                "API_KEY": "value"
            }
        },
        "file-system": {
            "command": "node",
            "args": [
                "/Users/jiazhenghao/CodingProjects/MCP/filesystem/index.ts",
                "~/"
            ]
        }
    }
}

(Option 2) Local Setup with STDIO

git clone https://github.com/particlefuture/MCPDiscovery.git
cd MCPDiscovery
uv sync
uv run server.py

Unfortunately, up to the time this md file is updated, claude only allows stdio. So you'd have to modify server.py to use STDIO. Find the main block in server.py, comment out the "Streamable HTTP server BLOCK" and uncomment the "Standard I/O server BLOCK". Final code should look like this

    asyncio.run(
        mcp.run_async(
            transport="stdio",
        )
    )

The mcp.json should look like this:

{
    "mcpServers": {
        "mcp-servers-discovery": {
            "command": "/Users/jiazhenghao/.local/bin/uv",
            "args": [
                "--directory",
                "{PATH_TO_THE_CLONED_REPO}",
                "run",
                "server.py"
            ]
        },
        "file-system": {
            "command": "node",
            "args": [
                "{FILE_SYSTEM_CLONED_PATH}/filesystem/index.ts",
                "~/"
            ]
        }
    }
}

Architecture

There are two types of search tools: quick search and a deep search.

Quick Search

When the user has an explicit goal of what type of MCP they want ("I want a MCP server that handles payment"), this tool just gives back a list of mcp servers.

Deep Search <sup>*</sup>

When the user has a high level or complex description of the goal ("Build me a website that analyzes other websites"). The LLM need to break it down into multiple steps and components (I need to analyze the website traffic, I need to analyze the website tech stack, I need to show some web data, ...), then find MCP servers for each step. If a corresponding MCP server doesn't exist, inform the user to see if we should ignore this component, break it down further, or implement it ourselves.

I refer to this as horizontal expansion and vertical expansion. Horizontal expansion is for finding independent components, vertical expansion is for finding steps that have to be done sequentially (more like fetch, analyze, generate graph). In the above example, those are all horizontal expansions.

There are multiple stages in the deep search:

  1. Planning stage:
    • setup mcp servers:
      • get and configure API keys as needed, provide users with instructions of obtaining API keys
      • modify the mcp.json files.
  2. Testing stage:
    • test to see if they servers are working. Call test_server_template_code tool, which return a simple client testing code example.
  3. Acting stage:
    • build the workflow/application by calling the MCP servers

*We're supposed to put deep search as a prompt, but both cursor and claude rarely calls prompts.

Change Log:

  • July 31 2025: Upgrade to 0.2.0. Added agentic planning. For complex tasks, the server now prompts the LLM to perform multi-step MCP server query.

Future

  • improve the demo videos: new domain name, actual example, voice explanation

  • Call For MCCP (Model Context Communication Protocol): Standard way of communicating between MCP servers. Motivation: Allow directly sending requests to other mcp servers (each mcp server might also have dependencies). (But would also need stricter supervision)

  • shouldn't call functions with a leading prefix internal_ unless instructed by MCP servers

  • Better database for MCP servers. It should be in structure: server, description, url, config json, (optionally, additional setup, docker, api_key, etc)

This repo is based on these repos. Huge thanks to the author and contributors of these repos.

  • wong2/awesome-mcp-servers
  • metorial/mcp-containers
  • punkpeye/awesome-mcp-servers

Trouble shooting

  • If using venv, ModuleNotFoundError even after installing the module -> delete venv and create a new venv.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选