A2A MCP Server

A2A MCP Server

A centralized server that tracks and manages connected agents, providing a web interface to monitor their status while enabling agent communication through a central point.

Category
访问服务器

README

A2A ⚡ MCP Agents

This project demonstrates two different approaches to agent communication:

  1. Master Control Program (MCP) - A centralized server-based approach where agents communicate through a central server
  2. Agent-to-Agent (A2A) - A decentralized peer-to-peer approach where agents communicate directly with each other

Installation

  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Usage

MCP Server and Agents

  1. Start the MCP server:
python cli.py run-mcp-server
  1. In separate terminals, start one or more MCP agents:
python cli.py run-mcp-agent --agent-id agent1
python cli.py run-mcp-agent --agent-id agent2

The MCP server will track all connected agents and their status. You can view the status by opening http://localhost:5000 in your browser.

A2A (Agent-to-Agent) Network

  1. Start the first A2A agent:
python cli.py run-a2a-agent --agent-id a2a1 --port 5001
  1. Start additional A2A agents, connecting them to existing agents:
python cli.py run-a2a-agent --agent-id a2a2 --port 5002 --peer localhost:5001
python cli.py run-a2a-agent --agent-id a2a3 --port 5003 --peer localhost:5001 --peer localhost:5002

A2A agents will automatically discover other agents through their initial peers. You can type messages in any agent's terminal to broadcast them to all connected agents.

Architecture

MCP (Master Control Program)

  • Centralized server that tracks all agents
  • Agents register with the server and maintain connection through heartbeats
  • Server provides a web interface to monitor agent status
  • Simple and reliable but has a single point of failure

A2A (Agent-to-Agent)

  • Decentralized peer-to-peer network
  • Agents connect directly to each other
  • Messages are flooded through the network
  • More resilient but requires more complex coordination
  • No single point of failure

Project Structure

a2a_mcp/
├── agents/              # Agent implementations
│   ├── mcp_agent.py    # MCP-based agent
│   └── a2a_agent.py    # Peer-to-peer agent
├── mcp/                # MCP server implementation
│   └── server.py       # Flask-based MCP server
├── cli.py             # Command-line interface
└── requirements.txt   # Python dependencies

Contributing

Feel free to submit issues and pull requests to improve the demonstration.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选