A2A MCP Server

A2A MCP Server

Enables Claude to connect and interact with A2A Protocol agents, allowing discovery of agent capabilities, sending messages to remote agents, managing multi-turn conversations, and viewing artifacts returned by agents.

Category
访问服务器

README

A2A MCP Server

An MCP server that implements an A2A Client for the A2A Protocol. The server can be used to connect and send messages to A2A Servers (remote agents).

The server needs to be initialised with one or more Agent Card URLs, each of which can have custom headers for authentication, configuration, etc.

Agents and their skills can be viewed with the list_available_agents tool, messages can be sent to the agents with the send_message_to_agent tool, and Artifacts that would overload the context can be viewed with view_text_artifact and view_data_artifact tools.

✨ Features

  • Connect to any A2A Agent
  • Use custom headers for authentication and configuration
  • View Agent Cards and Skills
  • Send messages to agents
  • Continue conversations with agents
  • View Artifacts that would overload the context
  • Agent conversations are stored in JSON format

📋 Requirements

To run the server you need to install uv if you haven't already.

MacOS/Linux:

curl -LsSf https://astral.sh/uv/install.sh | sh

Windows:

powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"

🚀 Quick Start

  1. Download Claude for Desktop
  2. Add the below to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
  "mcpServers": {
    "a2a": {
      "command": "uvx",
      "args": ["a2anet-mcp"],
      "env": {
        "A2A_AGENT_CARDS": "[{\"url\": \"https://example.com/.well-known/agent-card.json\"}]"
      }
    }
  }
}

Tip: If you don't have an Agent Card URL

  1. Create an account on A2A Net
  2. Pick an agent (e.g. "Tweet Search")
  3. Take its URL and add /agent-card.json to the end of it (e.g. https://a2anet.com/agent/7TaFj4YlbpngypjX74zl/agent-card.json)
  4. Go to Dashboard
  5. Click "+ Create Key" > Name your key (e.g. "Test") > Click "Create"
  6. Set A2A_AGENT_CARDS to the Agent Card URL and API key (e.g. "[{\"url\": \"https://a2anet.com/agent/7TaFj4YlbpngypjX74zl/agent-card.json\"}, \"custom_headers\": {\"X-API-Key\": \"a2anet_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\"}]")

⚙️ Configuration

A2A_AGENT_CARDS should be a JSON stringified list of objects. Each object must have a url key with the full path to the Agent Card. It can optionally have a custom_headers key with an object in the form {"header": "value"}:

export A2A_AGENT_CARDS='[
  {
    "url": "https://example.com/.well-known/agent-card.json",
    "custom_headers": {"X-API-Key": "your-key"} # Optional
  }
]'

🛠️ Tools

list_available_agents

Discover available agents and their capabilities.

send_message_to_agent

Send a message to an agent.

Parameter Required Description
agent_name Yes Agent name from list_available_agents
message Yes Your message or request
context_id No Continue an existing conversation

view_text_artifact

View text content from an artifact with optional line range selection.

Parameter Required Description
context_id Yes Conversation context ID
artifact_id Yes Artifact to view
line_start No Starting line number (1-based, inclusive)
line_end No Ending line number (1-based, inclusive)

view_data_artifact

View structured data from an artifact with optional filtering.

Parameter Required Description
context_id Yes Conversation context ID
artifact_id Yes Artifact to view
json_path No Dot-separated path to extract specific fields
rows No Row selection (index, list, range string, or "all")
columns No Column selection (name, list, or "all")

📖 Examples

List agents

list_available_agents()
{
  "agents": [
    {
      "name": "Twitter Agent",
      "description": "Find and analyze tweets",
      "skills": ["Find Tweets", "Analyze Sentiment"]
    }
  ],
  "count": 1
}

Send a message

send_message_to_agent(
  agent_name="Twitter Agent",
  message="Find tweets about AI from today"
)
{
  "context_id": "ctx-xyz789",
  "status": {
    "state": "completed",
    "message": {
      "parts": [
        { "type": "text", "text": "Found 25 tweets about AI." }
      ]
    }
  },
  "artifacts": [
    {
      "artifact_id": "art-456",
      "name": "Tweet Results",
      "parts": [
        {
          "type": "data",
          "data": {
            "_total_rows": 25,
            "_columns": [...],
            "_tip": "Table data was minimized. Use view_data_artifact to view specific data."
          }
        }
      ]
    }
  ]
}

Multi-turn conversation

Use context_id to continue a conversation:

send_message_to_agent(
  agent_name="Twitter Agent",
  message="Filter to only verified accounts",
  context_id="ctx-xyz789"
)
{
  "context_id": "ctx-xyz789",
  "status": {
    "state": "completed",
    "message": {
      "parts": [
        { "type": "text", "text": "Filtered to 8 tweets from verified accounts." }
      ]
    }
  },
  "artifacts": [...]
}

View data artifact

view_data_artifact(
  context_id="ctx-xyz789",
  artifact_id="art-456",
  rows="0-5",
  columns=["author", "text"]
)
{
  "artifact_id": "art-456",
  "name": "Tweet Results",
  "total_rows": 25,
  "total_columns": 5,
  "selected_rows": 5,
  "selected_columns": 2,
  "available_columns": ["id", "author", "text", "likes", "retweets"],
  "data": [
    { "author": "@techwriter", "text": "AI is transforming..." },
    { "author": "@ainews", "text": "Breaking: New model..." }
  ]
}

💾 Data Storage

Agent conversations are stored in JSON format to a standard path and can be inspected.

  • Linux: ~/.local/share/a2anet-mcp/conversations/
  • macOS: ~/Library/Application Support/a2anet-mcp/conversations/
  • Windows: AppData/Local/A2ANet/a2anet-mcp/conversations/

🔧 Development

Claude Desktop Setup

For local development:

  1. Clone the repository: git clone https://github.com/a2anet/a2a-mcp.git
  2. Download Claude for Desktop.
  3. Add to the below to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
  "mcpServers": {
    "a2a": {
      "command": "uv",
      "args": ["--directory", "/path/to/a2a-mcp", "run", "a2anet-mcp"],
      "env": {
        "A2A_AGENT_CARDS": "[{\"url\": \"https://example.com/.well-known/agent-card.json\"}]"
      }
    }
  }
}

📄 License

a2anet is distributed under the terms of the Apache-2.0 license.

🤝 Join the A2A Net Community

A2A Net is a site to find and share AI agents and open-source community. Join to share your A2A agents, ask questions, stay up-to-date with the latest A2A news, be the first to hear about open-source releases, tutorials, and more!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选