Aareguru MCP Server
Provides Swiss Aare river swimming data including water temperature, flow rates, safety assessments, and forecasts. Enables AI assistants to answer questions about current conditions, compare cities, and provide safety recommendations based on official BAFU thresholds.
README
Aareguru MCP Server
MCP server for Swiss Aare river data, enabling AI assistants like Claude to answer questions about swimming conditions, water temperature, flow rates, and safety.
🚀 Quick Start
Use directly from FastMCP Cloud (no installation needed):
Add it is as custom connector in Claude Desktop:

No authentication is needed.
Altnernatively, you can add the aareguru-mcp.mcpb file via option in Claude -> Settings -> Extensions. Or edit the Claude desktop config file directly:
{
"mcpServers": {
"aareguru": {
"url": "https://aareguru.fastmcp.app/mcp"
}
}
}
📸 Screenshots

🎯 Features
| Feature | Description |
|---|---|
| 6 MCP Tools | Temperature, flow, safety, forecasts, history |
| 4 MCP Resources | Direct data access via aareguru:// URIs |
| 3 MCP Prompts | Daily reports, spot comparisons, weekly trends |
| Rate Limiting | 100 req/min, 1000 req/hour protection against abuse |
| Metrics | Prometheus endpoint for monitoring and observability |
| Swiss German | Authentic temperature descriptions ("geil aber chli chalt") |
| BAFU Safety | Official flow danger levels and thresholds |
| Smart UX | Proactive safety warnings, alternative suggestions, seasonal context |
| 200+ Tests | 83% coverage, comprehensive test suite |
🛠️ Tools
| Tool | Description | Example Query |
|---|---|---|
get_current_temperature |
Water temperature with Swiss German text | "What's the Aare temperature?" |
get_current_conditions |
Full conditions (temp, flow, weather) | "How's the Aare looking today?" |
get_flow_danger_level |
Flow rate + BAFU safety assessment | "Is it safe to swim?" |
list_cities |
All monitored cities | "Which cities have data?" |
get_historical_data |
Temperature/flow history | "Show last 7 days" |
get_forecast |
Temperature/flow forecast | "Will it be warmer later?" |
BAFU Safety Thresholds
| Flow Rate | Level | Status |
|---|---|---|
| < 100 m³/s | Safe | Swimming OK |
| 100-220 m³/s | Moderate | Experienced swimmers only |
| 220-300 m³/s | Elevated | Caution advised |
| 300-430 m³/s | High | Dangerous |
| > 430 m³/s | Very High | Extremely dangerous |
📊 Resources
| URI | Description |
|---|---|
aareguru://cities |
List of all monitored cities |
aareguru://current/{city} |
Full current data for a city |
aareguru://today/{city} |
Minimal current data |
aareguru://widget |
Overview of all cities |
💬 Prompts
| Prompt | Description |
|---|---|
daily_swimming_report |
Comprehensive daily report with conditions, safety, forecast, and recommendation |
compare_swimming_spots |
Compare all cities to find the best swimming spot today |
weekly_trend_analysis |
Analyze temperature and flow trends over the past week |
💻 Local Installation
# Install uv and clone
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/schlpbch/aareguru-mcp.git && cd aareguru-mcp
uv sync
# Run tests
uv run pytest
Claude Desktop (Local)
Edit ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"aareguru": {
"command": "uv",
"args": ["--directory", "/path/to/aareguru-mcp", "run", "aareguru-mcp"]
}
}
}
🐳 Docker
cp .env.example .env
docker-compose up -d
curl http://localhost:8000/health
☁️ Hosting
FastMCP Cloud (Recommended)
This server is deployed on FastMCP Cloud, a managed platform for MCP servers with zero-config deployment.
Features:
- ✅ Zero-Config Deployment - Connect GitHub repo, automatic deployment
- ✅ Serverless Scaling - Scale from 0 to millions of requests instantly
- ✅ Git-Native CI/CD - Auto-deploy on push to
main, branch deployments for PRs - ✅ Built-in Security - OAuth support, token management, secure endpoints
- ✅ MCP Analytics - Request/response tracking, tool usage insights
- ✅ Free Tier - Available for personal servers
Deployment Steps:
- Sign in to fastmcp.cloud with GitHub
- Create Project and link your repository
- Deploy - Platform automatically clones, builds, and deploys
- Access - Get your unique URL (e.g.,
https://aareguru.fastmcp.app/mcp)
Configuration:
No special configuration needed! FastMCP Cloud auto-detects FastMCP servers. The server runs with:
- Health endpoint:
https://your-app.fastmcp.app/health - MCP endpoint:
https://your-app.fastmcp.app/mcp
Pricing:
- Free tier for personal projects
- Pay-as-you-go for teams (usage-based)
Alternative Hosting Options
FastMCP servers can be deployed to any Python-compatible cloud platform:
Container Platforms:
- Google Cloud Run
- AWS ECS/Fargate
- Azure Container Instances
PaaS Providers:
- Railway
- Render
- Vercel
Cloud VMs:
- AWS EC2
- Google Compute Engine
- Azure VMs
Deployment Pattern:
# For HTTP deployment, modify server to use HTTP transport
from fastmcp import FastMCP
mcp = FastMCP("aareguru")
# ... register tools ...
if __name__ == "__main__":
mcp.run(transport="sse") # Server-Sent Events for HTTP
Then containerize with Docker and deploy to your chosen platform.
📊 Monitoring & Observability
Prometheus Metrics
The server exposes Prometheus-compatible metrics at /metrics for monitoring:
Available Metrics:
aareguru_mcp_tool_calls_total- Counter of tool invocations by name and statusaareguru_mcp_tool_duration_seconds- Histogram of tool execution timesaareguru_mcp_api_requests_total- Counter of Aareguru API requestsaareguru_mcp_errors_total- Counter of errors by type and componentaareguru_mcp_active_requests- Gauge of currently active requests
Example:
curl http://localhost:8000/metrics
Rate Limiting
HTTP endpoints are protected with rate limiting:
- Default limits: 100 requests/minute, 1000 requests/hour
- Health endpoint: 60 requests/minute
- Headers: Rate limit info included in responses
- 429 responses: Automatic retry-after headers when limits exceeded
🧪 Development
uv run pytest # Run tests
uv run pytest --cov=aareguru_mcp # With coverage
uv run black src/ tests/ # Format
uv run ruff check src/ tests/ # Lint
📁 Project Structure
aareguru-mcp/
├── src/aareguru_mcp/ # Server, client, models, config
├── tests/ # 200 tests, 87% coverage
├── docs/ # API docs, testing, implementation
├── mcp_server.py # FastMCP CLI entry
└── pyproject.toml
🔒 Data Attribution
Data from BAFU, Aare.guru, MeteoSchweiz, Meteotest.
Non-commercial use only - Contact: aaregurus@existenz.ch
📄 License
MIT License - See LICENSE
Built with ❤️ for the Swiss Aare swimming community
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。