Aareguru MCP Server

Aareguru MCP Server

Provides Swiss Aare river swimming data including water temperature, flow rates, safety assessments, and forecasts. Enables AI assistants to answer questions about current conditions, compare cities, and provide safety recommendations based on official BAFU thresholds.

Category
访问服务器

README

Aareguru MCP Server

FastMCP Cloud Tests Coverage Python FastMCP

MCP server for Swiss Aare river data, enabling AI assistants like Claude to answer questions about swimming conditions, water temperature, flow rates, and safety.

🚀 Quick Start

Use directly from FastMCP Cloud (no installation needed):

Add it is as custom connector in Claude Desktop:

Claude Custom Connector

No authentication is needed.

Altnernatively, you can add the aareguru-mcp.mcpb file via option in Claude -> Settings -> Extensions. Or edit the Claude desktop config file directly:

{
  "mcpServers": {
    "aareguru": {
      "url": "https://aareguru.fastmcp.app/mcp"
    }
  }
}

📸 Screenshots

Claude Desktop Integration Claude Desktop Integration Claude Desktop Integration

🎯 Features

Feature Description
6 MCP Tools Temperature, flow, safety, forecasts, history
4 MCP Resources Direct data access via aareguru:// URIs
3 MCP Prompts Daily reports, spot comparisons, weekly trends
Rate Limiting 100 req/min, 1000 req/hour protection against abuse
Metrics Prometheus endpoint for monitoring and observability
Swiss German Authentic temperature descriptions ("geil aber chli chalt")
BAFU Safety Official flow danger levels and thresholds
Smart UX Proactive safety warnings, alternative suggestions, seasonal context
200+ Tests 83% coverage, comprehensive test suite

🛠️ Tools

Tool Description Example Query
get_current_temperature Water temperature with Swiss German text "What's the Aare temperature?"
get_current_conditions Full conditions (temp, flow, weather) "How's the Aare looking today?"
get_flow_danger_level Flow rate + BAFU safety assessment "Is it safe to swim?"
list_cities All monitored cities "Which cities have data?"
get_historical_data Temperature/flow history "Show last 7 days"
get_forecast Temperature/flow forecast "Will it be warmer later?"

BAFU Safety Thresholds

Flow Rate Level Status
< 100 m³/s Safe Swimming OK
100-220 m³/s Moderate Experienced swimmers only
220-300 m³/s Elevated Caution advised
300-430 m³/s High Dangerous
> 430 m³/s Very High Extremely dangerous

📊 Resources

URI Description
aareguru://cities List of all monitored cities
aareguru://current/{city} Full current data for a city
aareguru://today/{city} Minimal current data
aareguru://widget Overview of all cities

💬 Prompts

Prompt Description
daily_swimming_report Comprehensive daily report with conditions, safety, forecast, and recommendation
compare_swimming_spots Compare all cities to find the best swimming spot today
weekly_trend_analysis Analyze temperature and flow trends over the past week

💻 Local Installation

# Install uv and clone
curl -LsSf https://astral.sh/uv/install.sh | sh
git clone https://github.com/schlpbch/aareguru-mcp.git && cd aareguru-mcp
uv sync

# Run tests
uv run pytest

Claude Desktop (Local)

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "aareguru": {
      "command": "uv",
      "args": ["--directory", "/path/to/aareguru-mcp", "run", "aareguru-mcp"]
    }
  }
}

🐳 Docker

cp .env.example .env
docker-compose up -d
curl http://localhost:8000/health

☁️ Hosting

FastMCP Cloud (Recommended)

This server is deployed on FastMCP Cloud, a managed platform for MCP servers with zero-config deployment.

Features:

  • Zero-Config Deployment - Connect GitHub repo, automatic deployment
  • Serverless Scaling - Scale from 0 to millions of requests instantly
  • Git-Native CI/CD - Auto-deploy on push to main, branch deployments for PRs
  • Built-in Security - OAuth support, token management, secure endpoints
  • MCP Analytics - Request/response tracking, tool usage insights
  • Free Tier - Available for personal servers

Deployment Steps:

  1. Sign in to fastmcp.cloud with GitHub
  2. Create Project and link your repository
  3. Deploy - Platform automatically clones, builds, and deploys
  4. Access - Get your unique URL (e.g., https://aareguru.fastmcp.app/mcp)

Configuration:

No special configuration needed! FastMCP Cloud auto-detects FastMCP servers. The server runs with:

  • Health endpoint: https://your-app.fastmcp.app/health
  • MCP endpoint: https://your-app.fastmcp.app/mcp

Pricing:

  • Free tier for personal projects
  • Pay-as-you-go for teams (usage-based)

Alternative Hosting Options

FastMCP servers can be deployed to any Python-compatible cloud platform:

Container Platforms:

  • Google Cloud Run
  • AWS ECS/Fargate
  • Azure Container Instances

PaaS Providers:

  • Railway
  • Render
  • Vercel

Cloud VMs:

  • AWS EC2
  • Google Compute Engine
  • Azure VMs

Deployment Pattern:

# For HTTP deployment, modify server to use HTTP transport
from fastmcp import FastMCP

mcp = FastMCP("aareguru")
# ... register tools ...

if __name__ == "__main__":
    mcp.run(transport="sse")  # Server-Sent Events for HTTP

Then containerize with Docker and deploy to your chosen platform.

📊 Monitoring & Observability

Prometheus Metrics

The server exposes Prometheus-compatible metrics at /metrics for monitoring:

Available Metrics:

  • aareguru_mcp_tool_calls_total - Counter of tool invocations by name and status
  • aareguru_mcp_tool_duration_seconds - Histogram of tool execution times
  • aareguru_mcp_api_requests_total - Counter of Aareguru API requests
  • aareguru_mcp_errors_total - Counter of errors by type and component
  • aareguru_mcp_active_requests - Gauge of currently active requests

Example:

curl http://localhost:8000/metrics

Rate Limiting

HTTP endpoints are protected with rate limiting:

  • Default limits: 100 requests/minute, 1000 requests/hour
  • Health endpoint: 60 requests/minute
  • Headers: Rate limit info included in responses
  • 429 responses: Automatic retry-after headers when limits exceeded

🧪 Development

uv run pytest                    # Run tests
uv run pytest --cov=aareguru_mcp # With coverage
uv run black src/ tests/         # Format
uv run ruff check src/ tests/    # Lint

📁 Project Structure

aareguru-mcp/
├── src/aareguru_mcp/     # Server, client, models, config
├── tests/                # 200 tests, 87% coverage
├── docs/                 # API docs, testing, implementation
├── mcp_server.py         # FastMCP CLI entry
└── pyproject.toml

🔒 Data Attribution

Data from BAFU, Aare.guru, MeteoSchweiz, Meteotest.

Non-commercial use only - Contact: aaregurus@existenz.ch

📄 License

MIT License - See LICENSE


Built with ❤️ for the Swiss Aare swimming community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选