AbuseIPDB MCP Server

AbuseIPDB MCP Server

Integrates with the AbuseIPDB API to check IP addresses for abuse reports and report abusive IP addresses.

Category
访问服务器

README

AbuseIPDB MCP Server (Python)

A Model Context Protocol (MCP) server for integrating with the AbuseIPDB API. This server provides two main functions: checking IP addresses for abuse reports and reporting abusive IP addresses.

Features

  • Check IP: Query AbuseIPDB for abuse reports on a specific IP address
  • Report IP: Submit abuse reports for malicious IP addresses
  • Categories Mapping: Human-readable category names for abuse reports
  • Rate limit handling with detailed error messages
  • Comprehensive response formatting
  • Input validation for IP addresses and parameters
  • Docker support for easy deployment and containerization
  • MCP configuration for seamless integration with MCP clients
  • Async/await support for better performance
  • Type hints for better code quality

Setup

Prerequisites

  • Python 3.8 or higher
  • Docker (for containerized deployment)
  • An AbuseIPDB API key (get one at abuseipdb.com)

Local Installation

  1. Clone or download this repository

  2. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # Linux/macOS
    # or
    venv\Scripts\activate     # Windows
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Set your AbuseIPDB API key as an environment variable:

    export ABUSEIPDB_API_KEY="your_api_key_here"
    

Running the Server

python src/server.py

MCP Configuration

This server includes a complete MCP configuration file (mcp.json) that defines:

  • Server metadata: Name, version, description, and author information
  • Tool definitions: Complete parameter schemas with validation patterns
  • Environment variables: Required API key configuration
  • Rate limits: Documentation of AbuseIPDB API limits by subscription tier
  • Usage examples: Practical examples for each tool
  • Category reference: Complete list of AbuseIPDB abuse categories

Using with MCP Clients

  1. Copy the server configuration to your MCP client's configuration:

    {
      "mcpServers": {
        "abuseipdb": {
          "command": "python",
          "args": ["path/to/abuseipdb-mcp-server/src/server.py"],
          "env": {
            "ABUSEIPDB_API_KEY": "your_api_key_here"
          }
        }
      }
    }
    
  2. Test the server:

    python test/test_server.py
    

MCP Tools Available

The server exposes two tools to MCP clients:

check_ip

  • Purpose: Check IP reputation and abuse reports
  • Parameters: ipAddress (required), maxAgeInDays (optional), verbose (optional)
  • Returns: Formatted abuse report with confidence score, geolocation, and recent reports

report_ip

  • Purpose: Report abusive IP addresses
  • Parameters: ip (required), categories (required), comment (optional), timestamp (optional)
  • Returns: Confirmation with updated abuse confidence score

Docker Deployment

Quick Start with Docker

  1. Set your API key:

    # Linux/macOS
    export ABUSEIPDB_API_KEY="your_api_key_here"
    
    # Windows
    set ABUSEIPDB_API_KEY=your_api_key_here
    
  2. Run with helper script:

    # Linux/macOS
    ./docker-run.sh
    
    # Windows
    docker-run.bat
    

Manual Docker Commands

  1. Build the image:

    docker build -t abuseipdb-mcp-server .
    
  2. Run the container:

    docker run -it --rm \
      --name abuseipdb-mcp-server \
      -e ABUSEIPDB_API_KEY="your_api_key_here" \
      abuseipdb-mcp-server
    

Docker Compose

  1. Create a .env file:

    cp env.example .env
    # Edit .env and set your API key
    
  2. Start with Docker Compose:

    docker-compose up --build
    
  3. Stop the service:

    docker-compose down
    

Docker Features

  • Lightweight: Uses Python 3.11 slim base image
  • Secure: Runs as non-root user
  • Health checks: Built-in container health monitoring
  • Environment validation: Validates API key on startup
  • Cross-platform: Works on Linux, macOS, and Windows

Claude Desktop Integration

For Claude Desktop, add this to your configuration file:

Location: ~/Library/Application Support/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "abuseipdb": {
      "command": "python",
      "args": ["path/to/abuseipdb-mcp-server/src/server.py"],
      "env": {
        "ABUSEIPDB_API_KEY": "your_api_key_here"
      }
    }
  }
}

Or using Docker:

{
  "mcpServers": {
    "abuseipdb": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "--name", "abuseipdb-claude",
        "-e", "ABUSEIPDB_API_KEY",
        "abuseipdb-mcp-server:latest"
      ]
    }
  }
}

Available Tools

1. check_ip

Check an IP address for abuse reports.

Parameters:

  • ipAddress (required): A valid IPv4 or IPv6 address
  • maxAgeInDays (optional): Only return reports within the last x days (1-365, default: 30)
  • verbose (optional): Include detailed reports in response (default: false)

Example:

{
  "ipAddress": "118.25.6.39",
  "maxAgeInDays": 90,
  "verbose": true
}

2. report_ip

Report an abusive IP address to AbuseIPDB.

Parameters:

  • ip (required): A valid IPv4 or IPv6 address to report
  • categories (required): Comma-separated category IDs (e.g., "18,22")
  • comment (optional): Descriptive text of the attack (no PII)
  • timestamp (optional): ISO 8601 datetime of the attack

Example:

{
  "ip": "192.168.1.100",
  "categories": "18,22",
  "comment": "SSH brute force attempts detected",
  "timestamp": "2023-10-18T11:25:11-04:00"
}

API Rate Limits

The server handles rate limits automatically and provides detailed error messages when limits are exceeded. Daily rate limits vary by subscription tier:

Endpoint Standard Webmaster Supporter Basic Premium
check 1,000 3,000 5,000 10,000 50,000
report 1,000 3,000 1,000 10,000 50,000

Error Handling

The server provides comprehensive error handling for:

  • Invalid API keys
  • Rate limit exceeded (429 errors)
  • Invalid IP address formats
  • Invalid parameters
  • Network errors
  • API validation errors

Security Notes

⚠️ Important: When reporting IP addresses, ensure you strip any personally identifiable information (PII) from comments. AbuseIPDB is not responsible for any PII you reveal.

Category Reference

Common abuse categories for reporting:

  • 18: Brute Force
  • 22: SSH
  • 21: FTP Brute Force
  • 11: Comment Spam
  • 10: Email Spam
  • 5: Mail Server
  • 6: Hacking
  • 15: Port Scan

For a complete list, visit the AbuseIPDB categories page.

Development

Available Commands

  • python src/server.py - Start the MCP server
  • python test/test_server.py - Run comprehensive tests
  • docker build -t abuseipdb-mcp-server . - Build Docker image
  • docker-compose up --build - Start with Docker Compose

Project Structure

abuseipdb-mcp-server/
├── src/
│   ├── __init__.py               # Python package initialization
│   └── server.py                 # Main Python MCP server implementation
├── test/
│   └── test_server.py            # Python test suite
├── examples/
│   └── mcp-client-configs.json   # Example MCP client configurations
├── abuseipdb_api_docs/           # Original API documentation
├── requirements.txt              # Python dependencies
├── pyproject.toml                # Python project configuration
├── mcp.json                      # MCP server configuration
├── mcp-docker.json               # Docker-specific MCP configuration
├── mcp-schema.json               # JSON schema for MCP config
├── Dockerfile                    # Docker container definition
├── docker-compose.yml            # Docker Compose configuration
├── docker-run.sh                 # Helper script (Linux/macOS)
├── docker-run.bat                # Helper script (Windows)
├── env.example                   # Environment variables example
└── README.md                     # This file

Production Deployment

Docker Registry

  1. Tag and push to registry:

    docker tag abuseipdb-mcp-server your-registry/abuseipdb-mcp-server:latest
    docker push your-registry/abuseipdb-mcp-server:latest
    
  2. Deploy on production:

    docker run -d \
      --name abuseipdb-mcp-prod \
      --restart unless-stopped \
      -e ABUSEIPDB_API_KEY="your_api_key_here" \
      your-registry/abuseipdb-mcp-server:latest
    

Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: abuseipdb-mcp-server
spec:
  replicas: 1
  selector:
    matchLabels:
      app: abuseipdb-mcp-server
  template:
    metadata:
      labels:
        app: abuseipdb-mcp-server
    spec:
      containers:
      - name: abuseipdb-mcp-server
        image: abuseipdb-mcp-server:latest
        command: ["python", "src/server.py"]
        env:
        - name: ABUSEIPDB_API_KEY
          valueFrom:
            secretKeyRef:
              name: abuseipdb-secret
              key: api-key

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选