
Academic Author Network MCP Server
Enables analysis of academic author networks and research collaborations by retrieving co-authors and research keywords from sources like Semantic Scholar, OpenAlex, Crossref, and Google Scholar.
README
Academic Author Network MCP Server
A Model Context Protocol (MCP) server for analyzing academic author networks and research collaborations.
Features
- get_coauthors: Find all co-authors for a given researcher
- get_author_keywords: Extract research keywords from Google Scholar profile
Installation
- Clone or download this repository
- Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
Usage
Running the Server
python server.py
Example Tool Calls
Finding Co-authors
result = await get_coauthors(
name="Yann",
surname="LeCun",
institution="NYU" # Optional
)
Getting Research Keywords from Google Scholar
keywords = await get_author_keywords(
name="Yann",
surname="LeCun"
)
Data Sources
The server uses:
- Semantic Scholar API: Primary source for author and publication data
- OpenAlex API: Open academic knowledge graph
- Crossref API: DOI resolution and metadata
- Google Scholar: Web scraping for research interests and keywords
Features
- Rate Limiting: Respects API rate limits and includes delays for web scraping
- Caching: Reduces redundant API calls and scraping requests
- Error Handling: Graceful handling of API failures and scraping issues
- Data Merging: Combines data from multiple sources for co-authors
- Async Operations: Parallel API requests for better performance
Configuration
The server includes built-in rate limiting and error handling. No additional configuration is required for basic usage.
Limitations
- Free tier API limits apply
- Google Scholar scraping includes respectful delays
- Results quality depends on author name uniqueness
- Web scraping may occasionally fail due to anti-bot measures
Contributing
Contributions are welcome! Please ensure all API integrations respect rate limits and terms of service.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。