ACE MCP Server

ACE MCP Server

Implements Agentic Context Engineering to create self-improving AI coding assistants that learn from execution feedback and build persistent knowledge playbooks. Reduces token usage by 86.9% while improving code accuracy by 10.6% through incremental context updates.

Category
访问服务器

README

ACE MCP Server

Agentic Context Engineering (ACE) - Self-improving AI context framework with Model Context Protocol (MCP) integration for Cursor AI.

🎯 Overview

ACE MCP Server is an intelligent development assistant that learns from your coding patterns and automatically enhances your development workflow. It integrates seamlessly with Cursor AI through the Model Context Protocol (MCP), providing contextual code generation, intelligent analysis, and self-improving recommendations.

✨ Key Features

  • 🤖 Smart Code Generation - Context-aware code generation with automatic prompt enhancement
  • 🧠 Intelligent Code Analysis - Deep code analysis with actionable improvement suggestions
  • 📚 Self-Improving Playbook - Accumulates knowledge and patterns from your development work
  • 🔧 Multiple LLM Support - Works with OpenAI, Anthropic Claude, DeepSeek, Google, Mistral, and LM Studio
  • 🐳 Docker Ready - Complete containerized solution for local and production deployment
  • 🔒 Secure by Default - Bearer token authentication and comprehensive security measures

🚀 What Makes ACE Special

ACE doesn't just generate code - it learns from your development patterns and improves over time:

  1. Generates contextual development trajectories
  2. Reflects on code to extract insights and patterns
  3. Curates knowledge into a self-improving playbook
  4. Enhances future interactions with accumulated wisdom

📚 Documentation

🚀 Getting Started

⚙️ Setup & Configuration

🚀 Deployment

📖 Project Documentation

⚡ Quick Start

1. Clone and Setup

git clone https://github.com/Angry-Robot-Deals/ace-mcp.git
cd ace-mcp
cp .env.example .env
# Edit .env with your configuration

2. Docker Development

# Start development environment
docker-compose -f docker-compose.dev.yml up -d

# View logs
docker-compose -f docker-compose.dev.yml logs -f

# Stop environment  
docker-compose -f docker-compose.dev.yml down

3. Configure Cursor AI

See detailed setup instructions:

4. Use ACE Commands

# Smart code generation
@ace_smart_generate create a REST API endpoint

# Intelligent code analysis  
@ace_smart_reflect [your code here]

# Context-aware assistance
@ace_context_aware optimize database queries domain:database

# Automatic prompt enhancement
@ace_enhance_prompt create secure authentication focus_area:security

🛠️ Development

Prerequisites

  • Node.js 18+
  • Docker & Docker Compose
  • TypeScript

Local Development

# Install dependencies
npm install

# Run tests
npm test

# Build project
npm run build

# Start development server
npm run dev

Docker Management

# Development environment
docker-compose -f docker-compose.dev.yml up -d

# Production environment  
docker-compose up -d

# View service logs
docker-compose logs ace-server
docker-compose logs ace-dashboard

# Rebuild services
docker-compose build --no-cache

🔧 Configuration

Environment Variables

Copy .env.example to .env and configure:

# LLM Provider Configuration
LLM_PROVIDER=openai                    # openai, lmstudio, deepseek, anthropic
OPENAI_API_KEY=your_openai_key
OPENAI_MODEL=gpt-4

# LM Studio Configuration (for local models)
LMSTUDIO_BASE_URL=http://localhost:1234/v1
LMSTUDIO_MODEL=local-model

# Server Configuration
ACE_SERVER_PORT=34301
DASHBOARD_PORT=34300
API_BEARER_TOKEN=your-secure-token

# Docker Configuration
COMPOSE_PROJECT_NAME=ace-mcp
DOCKER_BUILDKIT=1

Port Configuration

ACE uses ports in the range 34300-34400:

  • 34300: Dashboard (HTTP)
  • 34301: ACE MCP Server (API)
  • 34302-34400: Reserved for future services

🤝 Contributing

  1. Read the Documentation - Start with Project Overview
  2. Follow Best Practices - Review Development Guide
  3. Submit PRs - Follow our contribution guidelines

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔗 Links


ACE MCP Server - Making AI development smarter, one interaction at a time. 🚀

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选