ACE MCP Server
Implements Agentic Context Engineering to create self-improving AI coding assistants that learn from execution feedback and build persistent knowledge playbooks. Reduces token usage by 86.9% while improving code accuracy by 10.6% through incremental context updates.
README
ACE MCP Server
Agentic Context Engineering (ACE) - Self-improving AI context framework with Model Context Protocol (MCP) integration for Cursor AI.
🎯 Overview
ACE MCP Server is an intelligent development assistant that learns from your coding patterns and automatically enhances your development workflow. It integrates seamlessly with Cursor AI through the Model Context Protocol (MCP), providing contextual code generation, intelligent analysis, and self-improving recommendations.
✨ Key Features
- 🤖 Smart Code Generation - Context-aware code generation with automatic prompt enhancement
- 🧠 Intelligent Code Analysis - Deep code analysis with actionable improvement suggestions
- 📚 Self-Improving Playbook - Accumulates knowledge and patterns from your development work
- 🔧 Multiple LLM Support - Works with OpenAI, Anthropic Claude, DeepSeek, Google, Mistral, and LM Studio
- 🐳 Docker Ready - Complete containerized solution for local and production deployment
- 🔒 Secure by Default - Bearer token authentication and comprehensive security measures
🚀 What Makes ACE Special
ACE doesn't just generate code - it learns from your development patterns and improves over time:
- Generates contextual development trajectories
- Reflects on code to extract insights and patterns
- Curates knowledge into a self-improving playbook
- Enhances future interactions with accumulated wisdom
📚 Documentation
🚀 Getting Started
- Installation Guide - Complete setup instructions
- Project Overview - Detailed project introduction
- Quick Start - Fast track to running ACE
⚙️ Setup & Configuration
- Cursor AI Setup - Basic MCP integration
- Enhanced Auto Setup - Smart auto-enhancement features
- LLM Providers - Configure different AI providers
🚀 Deployment
- Production Deployment - Deploy to production servers
- Full Deployment Guide - Complete Docker deployment guide
📖 Project Documentation
- Project Status - Current development status
- Architecture - Technical architecture details
- GitHub Setup - Repository initialization
⚡ Quick Start
1. Clone and Setup
git clone https://github.com/Angry-Robot-Deals/ace-mcp.git
cd ace-mcp
cp .env.example .env
# Edit .env with your configuration
2. Docker Development
# Start development environment
docker-compose -f docker-compose.dev.yml up -d
# View logs
docker-compose -f docker-compose.dev.yml logs -f
# Stop environment
docker-compose -f docker-compose.dev.yml down
3. Configure Cursor AI
See detailed setup instructions:
- Basic Cursor AI Setup - Initialize your MCP server with basic ACE tools
- Enhanced Auto Setup - Automatically enhance prompts and invoke appropriate ACE methods
4. Use ACE Commands
# Smart code generation
@ace_smart_generate create a REST API endpoint
# Intelligent code analysis
@ace_smart_reflect [your code here]
# Context-aware assistance
@ace_context_aware optimize database queries domain:database
# Automatic prompt enhancement
@ace_enhance_prompt create secure authentication focus_area:security
🛠️ Development
Prerequisites
- Node.js 18+
- Docker & Docker Compose
- TypeScript
Local Development
# Install dependencies
npm install
# Run tests
npm test
# Build project
npm run build
# Start development server
npm run dev
Docker Management
# Development environment
docker-compose -f docker-compose.dev.yml up -d
# Production environment
docker-compose up -d
# View service logs
docker-compose logs ace-server
docker-compose logs ace-dashboard
# Rebuild services
docker-compose build --no-cache
🔧 Configuration
Environment Variables
Copy .env.example to .env and configure:
# LLM Provider Configuration
LLM_PROVIDER=openai # openai, lmstudio, deepseek, anthropic
OPENAI_API_KEY=your_openai_key
OPENAI_MODEL=gpt-4
# LM Studio Configuration (for local models)
LMSTUDIO_BASE_URL=http://localhost:1234/v1
LMSTUDIO_MODEL=local-model
# Server Configuration
ACE_SERVER_PORT=34301
DASHBOARD_PORT=34300
API_BEARER_TOKEN=your-secure-token
# Docker Configuration
COMPOSE_PROJECT_NAME=ace-mcp
DOCKER_BUILDKIT=1
Port Configuration
ACE uses ports in the range 34300-34400:
- 34300: Dashboard (HTTP)
- 34301: ACE MCP Server (API)
- 34302-34400: Reserved for future services
🤝 Contributing
- Read the Documentation - Start with Project Overview
- Follow Best Practices - Review Development Guide
- Submit PRs - Follow our contribution guidelines
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Links
ACE MCP Server - Making AI development smarter, one interaction at a time. 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。