Activity Reporting MCP Server

Activity Reporting MCP Server

Enables Google Developer Experts to report various activities (content creation, speaking engagements, workshops, mentoring) through AI conversational interfaces by connecting Advocu API with Model Context Protocol.

Category
访问服务器

README

Activity Reporting MCP Server

Motivation

This project empowers Google Developer Experts (GDEs) to effortlessly report their activities through AI-powered conversational interfaces. By integrating the Advocu API with the Model Context Protocol (MCP), GDEs can now submit their content creation, speaking engagements, workshops, mentoring sessions, and other activities directly through AI chat models or command-line tools. This streamlines the reporting process, making it more intuitive and accessible while maintaining the detailed tracking that the GDE program requires.

A Model Context Protocol (MCP) server for reporting activities to the Advocu GDE API.

Quick Installation

Using NPM

npm install -g advocu-mcp-server

Using npx (Recommended: No Installation Required)

npx advocu-mcp-server

Configuration

Prerequisites

  • Node.js 18+
  • Advocu GDE API access token

Step 1: Configure Claude Desktop

Edit your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%/Claude/claude_desktop_config.json

Option A: Using Global Installation

{
  "mcpServers": {
    "activity-reporting": {
      "command": "advocu-mcp-server",
      "env": {
        "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here"
      }
    }
  }
}

Option B: Using npx

{
  "mcpServers": {
    "activity-reporting": {
      "command": "npx",
      "args": ["-y", "advocu-mcp-server"],
      "env": {
        "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here"
      }
    }
  }
}

Step 2: Restart Claude Desktop

Close and reopen Claude Desktop to load the new configuration.

Alternative: Local Development Setup

If you want to contribute or modify the server:

git clone https://github.com/carlosazaustre/advocu-mcp-server.git
cd advocu-mcp-server
npm install
npm run build

Then configure Claude Desktop with the local path:

{
  "mcpServers": {
    "activity-reporting": {
      "command": "node",
      "args": ["/absolute/path/to/advocu-mcp-server/dist/index.js"],
      "env": {
        "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here"
      }
    }
  }
}

Available Tools

Once configured, you'll have access to these tools in Claude:

  • submit_content_creation - Report content creation activities
  • submit_public_speaking - Report public speaking engagements
  • submit_workshop - Report workshop sessions
  • submit_mentoring - Report mentoring activities
  • submit_product_feedback - Report product feedback submissions
  • submit_googler_interaction - Report interactions with Google employees
  • submit_story - Report success stories

Usage Examples

In Claude, you can use commands like:

"Submit a content creation activity for my blog post about React hooks published on Medium"

"Create a public speaking draft for my presentation at ReactConf 2024"

"Report a mentoring session I had with 3 junior developers about TypeScript"

API Reference

For detailed information about all available endpoints, parameters, and data formats, see the API Documentation.

Development

Development mode

npm run dev

Build

npm run build

Lint and format

npm run lint
npm run format

Rate Limiting

The API has a limit of 30 requests per minute. The server automatically handles 429 errors.

Project Structure

advocu-mcp-server/
├── src/
│   ├── index.ts                    # Entry point
│   ├── server.ts                   # Main server class
│   ├── interfaces/                 # Activity draft interfaces
│   │   ├── ActivityDraftBase.ts
│   │   ├── ContentCreationDraft.ts
│   │   ├── GooglerInteractionDraft.ts
│   │   ├── MentoringDraft.ts
│   │   ├── ProductFeedbackDraft.ts
│   │   ├── PublicSpeakingDraft.ts
│   │   ├── StoryDraft.ts
│   │   └── WorkshopDraft.ts
│   └── types/                      # Type definitions
│       ├── ContentType.ts
│       ├── Country.ts
│       ├── EventFormat.ts
│       ├── InteractionFormat.ts
│       ├── InteractionType.ts
│       ├── ProductFeedbackContentType.ts
│       ├── SignificanceType.ts
│       └── Tag.ts
├── dist/                           # Compiled output
├── docs/                           # Documentation
│   └── API.md
├── package.json
├── tsconfig.json
└── README.md

Troubleshooting

Error: "Command not found"

  • Verify that the path in claude_desktop_config.json is absolute
  • Ensure the file is executable: chmod +x dist/index.js

Error: "Authentication failed"

  • Verify that your token in .env is correct
  • The token must have permissions for the Personal API

Error: "ADVOCU_ACCESS_TOKEN is not set"

  • Make sure your .env file exists in the project root
  • Verify the token is properly set in the .env file

Error: "Rate limit exceeded"

  • Wait one minute before making more requests
  • The API limits to 30 requests per minute

Contributing

  1. Fork the project
  2. Create a feature branch: git checkout -b feature/new-feature
  3. Commit your changes: git commit -am 'Add new feature'
  4. Push to the branch: git push origin feature/new-feature
  5. Create a Pull Request

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选