Adobe Commerce Support MCP Server
Generates professional Adobe Commerce support responses from case findings. Supports both structured and mixed content formats with automatic categorization capabilities.
README
Adobe Commerce Support MCP Server
This MCP server helps generate professional Adobe Commerce support responses from case findings.
Installation
- Dependencies are already installed ✅
- Server is ready to use ✅
Usage with Cursor
To use this MCP server with Cursor, add the following configuration to your Cursor settings:
Option 1: Add to Cursor Settings (Recommended)
- Open Cursor Settings (Cmd+,)
- Search for "MCP"
- Add this server configuration:
{
"mcpServers": {
"adobe-support-mcp": {
"command": "python3",
"args": ["/Users/kavingas/VSCodeProjects/mcp_support_server/mcp_support_server.py"],
"env": {}
}
}
}
Option 2: Use the provided config file
The mcp_config.json file in this directory contains the ready-to-use configuration.
How to Use
Option 1: Structured Content (Traditional)
- Create a
find.mdfile with properly structured content:
### Findings
[Your investigation findings here]
### Analysis
[Your technical analysis here]
### Recommendations
[Your recommended solutions here]
- Use the
generate_support_replytool to create a professional customer response.
Option 2: Mixed Content (New - LLM Assisted)
- Create a
find.mdfile with mixed/unstructured content (any format) - Use either:
categorize_mixed_contenttool first, then use LLM to process the categorization promptgenerate_support_replywithauto_categorize=true(default) for automatic handling
The server will automatically detect if your content needs categorization and provide LLM prompts to organize it properly.
Tools Available
-
generate_support_reply: Generates a professional Adobe Commerce support response from case findings
find_file: Input file (default: "find.md")resp_file: Output file (default: "resp.md")auto_categorize: Automatically handle mixed content (default: true)
-
categorize_mixed_content: Creates LLM prompts to categorize mixed content into structured format
find_file: Input file with mixed content (default: "find.md")categorized_file: Output file with categorization prompt (default: "categorized.md")
Files
mcp_support_server.py- Main MCP serverrequirements.txt- Python dependenciesmcp_config.json- Cursor configurationsetup.py- Installation script
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。