Advanced MCP Server
Provides AI coding agents with a secure, sandboxed environment for executing coding tasks including file operations, command execution, and testing. Features session management, policy enforcement, and Docker-based sandboxing for safe code execution and development workflows.
README
Advanced MCP Server
An implementation of the Model Context Protocol (MCP) server that provides AI coding agents with a secure, flexible, and extensible environment for executing coding tasks.
Features
- Session Management
- Resource Management
- Sandboxed Tool Execution
- Policy Engine
- Multi-Agent Collaboration
- Extensible Tooling
- Rate Limiting
- Custom Tools (Code Analysis, Testing, Documentation)
Getting Started
Prerequisites
- Node.js 18+
- Docker (optional, for enhanced sandboxing)
- Docker Compose (optional)
Installation
- Clone the repository
- Install dependencies:
npm install
Development
To start the development server:
npm run dev
To start with Docker:
docker-compose up
Building
To build the TypeScript code:
npm run build
Testing
To run tests:
npm test
To run tests with coverage:
npm run test:coverage
API Documentation
Detailed API documentation is available in the following formats:
Using with Qwen Code
The MCP Server is designed to work seamlessly with Qwen Code. After starting the server:
-
Start the server:
npm run dev -
Configure Qwen Code to use the MCP server by creating a
.qwen/settings.jsonfile:{ "mcpServers": { "local-fullstack-mcp": { "name": "Local Fullstack MCP Server", "transport": "http", "url": "http://localhost:8080", "default": true } } } -
Initialize a session:
curl -X POST http://localhost:8080/session/init \ -H "Content-Type: application/json" \ -d '{"tools": ["readFile", "writeFile", "runCommand", "listFiles"]}' -
Use the session ID with Qwen Code commands to perform operations in a secure, sandboxed environment.
See the Qwen CLI Integration Guide for detailed instructions.
Architecture
The MCP server follows a modular architecture with the following components:
- MCP Gateway - Accepts connections (gRPC + WebSocket for streaming)
- Session Manager - Handles authentication, session lifecycle, and capability negotiation
- Resource Manager - File system abstraction with policy enforcement
- Execution Manager - Runs commands/tools inside sandboxed runtimes (Docker)
- Policy Engine - Enforces access rules and maintains audit logs
- Audit Log - Immutable logging system for accountability
- Sandbox Runtime - Docker containers with controlled resources
- Workspace Storage - Persistent project storage (bind-mounted or virtual FS)
Security
- Sandboxed execution using Docker containers
- Resource policy enforcement
- Audit logging for all actions
- Capability negotiation
- Rate limiting
- Policy-based access control
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。