
Advanced TTS MCP Server
Provides high-quality text-to-speech synthesis with 10 natural voices, emotion control, and dynamic pacing for professional applications requiring expressive speech output.
README
Advanced TTS MCP Server
A high-quality, feature-rich Text-to-Speech MCP server with native TypeScript implementation. Designed for professional applications requiring natural, expressive speech synthesis with advanced controls and zero external dependencies.
✨ Features
🎯 Advanced Voice Control
- 10 High-Quality Voices - Male and female voices with distinct personalities
- Emotion Control - Neutral, happy, excited, calm, serious, casual, confident
- Dynamic Pacing - Natural, conversational, presentation, tutorial, narrative modes
- Speed & Volume - Precise control from 0.25x to 3.0x speed, 0.1x to 2.0x volume
🚀 Professional Capabilities
- Streaming Audio - Real-time synthesis and playback
- Batch Processing - Handle multiple text segments efficiently
- Multiple Formats - WAV, MP3, FLAC, OGG output support
- Natural Speech Enhancement - Automatic pause insertion and emotion markers
- Queue Management - Handle multiple concurrent requests
🔧 MCP Integration
- 6 Powerful Tools - Complete synthesis, batch processing, voice management
- 2 Rich Resources - Voice capabilities and usage examples
- Real-time Status - Track processing progress and manage requests
- File Management - Save, list, and organize audio outputs
🚀 Quick Start
Option 1: Deploy to Smithery.ai (Recommended)
🎯 One-Click Deployment to Smithery Platform
- Deploy Now: Visit Smithery.ai and import this repository
- Configure: Set your preferred voice and speech settings
- Use Instantly: Access via Claude Desktop or any MCP-compatible client
Benefits:
- ✅ Zero setup required
- ✅ Automatic scaling and updates
- ✅ No model downloads needed
- ✅ Enterprise-grade hosting
📋 Full Smithery Deployment Guide →
Option 2: Local Installation
Prerequisites:
- Node.js 18+
Installation:
- Clone the repository
git clone https://github.com/samihalawa/advanced-tts-mcp.git
cd advanced-tts-mcp
- Install dependencies
npm install
- Configure Claude Desktop
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"advanced-tts": {
"command": "node",
"args": ["dist/index.js"],
"cwd": "/path/to/advanced-tts-mcp"
}
}
}
- Start using!
# Build TypeScript
npm run build
# Start server
npm start
Restart Claude Desktop and start synthesizing with natural, expressive voices.
🎙️ Available Voices
Voice ID | Name | Gender | Description |
---|---|---|---|
af_heart |
Heart | Female | Warm, friendly voice (default) |
af_sky |
Sky | Female | Clear, bright voice |
af_bella |
Bella | Female | Elegant, sophisticated voice |
af_sarah |
Sarah | Female | Professional, confident voice |
af_nicole |
Nicole | Female | Gentle, soothing voice |
am_adam |
Adam | Male | Strong, authoritative voice |
am_michael |
Michael | Male | Friendly, approachable voice |
bf_emma |
Emma | Female | Young, energetic voice |
bf_isabella |
Isabella | Female | Mature, expressive voice |
bm_lewis |
Lewis | Male | Deep, resonant voice |
📚 Usage Examples
Basic Synthesis
# Simple text-to-speech
await synthesize_speech(
text="Hello! Welcome to Advanced TTS.",
voice_id="af_heart"
)
Emotional Expression
# Excited announcement
await synthesize_speech(
text="This is amazing news! You're going to love this new feature!",
voice_id="af_heart",
emotion="excited",
pacing="conversational",
speed=1.1
)
Professional Presentation
# Tutorial narration
await synthesize_speech(
text="Step one: Open your browser. Step two: Navigate to the website.",
voice_id="am_adam",
emotion="calm",
pacing="tutorial",
speed=0.9
)
Batch Processing
# Multiple segments with pauses
await batch_synthesize(
segments=[
"Welcome to our presentation.",
"Today we'll cover three main topics.",
"Let's begin with the first topic."
],
voice_id="af_sarah",
emotion="confident",
pacing="presentation",
merge_output=True,
segment_pause=1.0,
save_file=True
)
🛠️ Available Tools
synthesize_speech
Convert text to natural speech with full control over voice characteristics.
Parameters:
text
- Text to synthesize (max 10,000 chars)voice_id
- Voice selection (see table above)speed
- Speech rate (0.25-3.0)emotion
- Voice emotion (neutral, happy, excited, calm, serious, casual, confident)pacing
- Speech style (natural, conversational, presentation, tutorial, narrative, fast, slow)volume
- Audio volume (0.1-2.0)output_format
- File format (wav, mp3, flac, ogg)save_file
- Save to file (boolean)filename
- Custom filename
batch_synthesize
Process multiple text segments efficiently with optional merging.
Parameters:
segments
- List of text segmentsmerge_output
- Combine into single filesegment_pause
- Pause between segments (0.0-5.0s)- All synthesis parameters from above
get_voices
Retrieve complete voice information and capabilities.
get_status
Check processing status for synthesis requests.
cancel_request
Cancel active synthesis operations.
list_output_files
Browse saved audio files with metadata.
🎛️ Voice Controls
Emotions
- Neutral - Standard, professional tone
- Happy - Upbeat, cheerful expression
- Excited - Enthusiastic, energetic delivery
- Calm - Relaxed, soothing tone
- Serious - Formal, authoritative delivery
- Casual - Relaxed, conversational style
- Confident - Assured, professional tone
Pacing Styles
- Natural - Balanced, human-like rhythm
- Conversational - Casual discussion pace
- Presentation - Professional speaking rhythm
- Tutorial - Educational, clear delivery
- Narrative - Storytelling pace
- Fast - Quick delivery (1.2x base speed)
- Slow - Deliberate delivery (0.8x base speed)
🎵 Audio Formats
Format | Quality | Use Case |
---|---|---|
WAV | Uncompressed | Highest quality, editing |
MP3 | Compressed | Web, streaming, sharing |
FLAC | Lossless | Archival, high-quality storage |
OGG | Compressed | Open source alternative |
🔧 Configuration
Environment Variables
# Model paths (optional)
KOKORO_MODEL_PATH=./kokoro-v1.0.onnx
KOKORO_VOICES_PATH=./voices-v1.0.bin
# Output settings
TTS_OUTPUT_DIR=./audio_output
TTS_MAX_QUEUE_SIZE=100
# Audio settings
TTS_DEFAULT_VOICE=af_heart
TTS_ENABLE_STREAMING=true
Server Configuration
config = ServerConfig(
model_path="./kokoro-v1.0.onnx",
voices_path="./voices-v1.0.bin",
output_dir="./audio_output",
max_queue_size=100,
enable_streaming=True,
default_voice="af_heart"
)
🏗️ Architecture
├── src/advanced_tts/
│ ├── __init__.py # Package initialization
│ ├── server.py # MCP server implementation
│ ├── engine.py # Kokoro TTS engine wrapper
│ ├── models.py # Data models and validation
│ └── utils.py # Utility functions
├── pyproject.toml # Project configuration
├── README.md # Documentation
└── LICENSE # MIT License
🤝 Contributing
Contributions welcome! Areas for improvement:
- Additional voice models
- Real-time streaming synthesis
- Advanced audio effects
- Multi-language support
- Performance optimizations
📄 License
MIT License - see LICENSE for details.
🙏 Acknowledgments
- Kokoro TTS - High-quality neural voice synthesis
- MCP Protocol - Seamless AI model integration
- FastMCP - Efficient server framework
Developed by Sami Halawa
Transform your text into natural, expressive speech with Advanced TTS MCP Server.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。