Agent Data Bridge

Agent Data Bridge

An MCP server that provides data bridging from Spring Boot interfaces and a lightweight Python sandbox for script execution. It enables agents to fetch data as Markdown or Parquet files and perform automated data analysis within a controlled environment.

Category
访问服务器

README

Agent Data Bridge

一个面向 Agent 的“数据桥接 + 轻量沙盒执行”服务,提供两种对外形态:

  • FastAPI HTTP API:用于手工/系统直接调用。
  • MCP Server(SSE Transport):把能力以 Tool 的形式暴露给支持 MCP 的客户端。

目前实际实现包含:

  • 通过两步 OAuth2(token -> query)调用 Spring Boot 接口获取数据(见 src/app/services/springboot_client.py)。
  • 将返回结果中的首个 Markdown 表格解析为 DataFrame;小数据直接返回表格,大数据保存为 parquet 到沙盒目录并返回摘要(见 src/app/main.py)。
  • 提供一个简易 Python “沙盒执行”入口:在指定的沙盒目录中运行脚本,支持超时与输出长度截断(见 src/app/services/sandbox.py)。

运行要求

快速开始

  1. 安装依赖
  • uv sync
  1. 启动 HTTP API(FastAPI)
  • uv run -- uvicorn app.main:app --reload --app-dir src

默认监听 http://127.0.0.1:8000

如果希望“一条命令同时启动 REST + MCP”,可使用:

  • uv run -- python -m app.run_all

1.(可选)启动 MCP Server(SSE)

本项目的 MCP Server 默认监听 0.0.0.0:9000(可通过 MCP_HOST/MCP_PORT 修改),并使用 SSE 传输:

  • SSE 端点:GET /sse
  • 消息端点:POST /messages/

启动命令:

  • Windows(PowerShell,推荐):
$env:PYTHONPATH = "src"
uv run -- python -m app.mcp_server
  • 或者切换到 src 目录运行(一次性):
pushd src
uv run -- python -m app.mcp_server
popd
  • macOS/Linux:
PYTHONPATH=src uv run -- python -m app.mcp_server

配置(.env)

复制 .env.example.env 后按需修改。

当前代码实际会用到的配置(与 .env.example 保持一致):

  • REST_HOST / REST_PORT:REST(FastAPI) 监听地址(用于 Docker 启动与一键启动脚本)。
  • MCP_HOST / MCP_PORT:MCP(SSE) 监听地址。
  • APP_ID / APP_SECRET:Spring Boot OAuth2 client credentials(默认 agent/agent)。

说明:

  • SPRING_BOOT_BASE_URL / SPRING_BOOT_API_PATH 目前在代码中未被使用;/api/fetch 与 MCP 的 fetch_data 都会直接使用传入的 host 参数作为目标地址(见 src/app/services/springboot_client.py)。

HTTP API

健康检查

  • GET /health

返回:{"status":"ok"}

拉取数据并返回摘要

  • POST /api/fetch

请求体:

{
  "host": "http://192.168.10.21:3000",
  "userid": "Admin",
  "sql": "select ...",
  "dataset": "demo"
}

行为(与实现一致,见 src/app/main.py):

  • 解析返回结果中的 data.markdown(Markdown 表格)。
  • Rows <= 15:直接返回完整 Markdown 表格。
  • Rows > 15:保存为 parquet 到 SANDBOX_DIR,并返回字段预览 + 前 5 行。

响应:

{ "message": "..." }

示例(curl):

curl -X POST http://127.0.0.1:8000/api/fetch \
  -H "Content-Type: application/json" \
  -d '{"host":"http://192.168.10.21:3000","userid":"Admin","sql":"select 1","dataset":"demo"}'

运行沙盒脚本

  • POST /api/sandbox/run

方式 A:JSON

{ "filename": "anything.py", "code": "print(123)" }

方式 B:multipart/form-data

  • 上传字段名 file(.py 文件)
  • 或者传 code / filename

返回(与实现一致,见 src/app/services/sandbox.py):

{
  "filename": "script_xxx.py",
  "exit_code": 0,
  "stdout": "...",
  "stderr": "..."
}

MCP Tools

MCP Server 目前提供以下 tools(见 src/app/mcp_server.py):

  • fetch_data(host, userid, sql, dataset) -> str
  • sandbox_run(code, filename=None) -> dict
  • sandbox_list_files() -> str

常见用法:先 fetch_data 生成 parquet 文件名,再用 sandbox_run 执行 Python 读取:

import pandas as pd
df = pd.read_parquet("<file_name>")
print(df.head())

目录说明

  • sandbox_storage/:默认沙盒数据目录(可通过 SANDBOX_DIR 覆盖)。
  • sandbox_storage/_scripts/:沙盒执行时写入的临时脚本目录(自动创建)。

安全与限制

  • 沙盒执行不是强隔离:只是把工作目录固定到 SANDBOX_DIR,并加了超时与输出截断;请勿在不可信输入场景直接暴露到公网。
  • Spring Boot 的 client_id/client_secret 已改为从 .env 读取(APP_ID/APP_SECRET,默认 agent/agent)。

Docker

同时启动 REST + MCP(推荐使用 compose,并把沙盒目录挂载到宿主机):

docker compose up --build

端口:

  • REST: http://127.0.0.1:${REST_PORT:-8000}
  • MCP(SSE): http://127.0.0.1:${MCP_PORT:-9000}/sse

数据卷:

  • ./sandbox_storage -> /app/sandbox_storage

常见问题

Windows 下 ModuleNotFoundError: No module named 'app'

使用 PowerShell 运行 MCP Server 时,请先设置:

$env:PYTHONPATH = "src"
uv run -- python -m app.mcp_server

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选