agent-skill-loader

agent-skill-loader

MCP server to dynamically load Claude Code skills into AI agents

Category
访问服务器

README

Agent Skill Loader 🧠

npm version MCP Registry License: MIT Node.js Version TypeScript MCP

Agent Skill Loader is a Model Context Protocol (MCP) server that acts as a bridge between your static Claude Code Skills library and dynamic AI agents (like Antigravity, Claude Desktop, or Cursor).

It allows agents to "learn" skills on demand without requiring you to manually copy files into every project.

🚀 Features

  • Discovery: list_skills - Scans your configured skill directories.
  • Dynamic Learning: read_skill - Fetches the SKILL.md content for the agent to read.
  • Persistence: install_skill - Copies the skill permanently to your project if needed.
  • Configuration: manage_search_paths - Add/remove skill directories at runtime.
  • Troubleshooting: debug_info - Diagnose configuration and path issues.

🛠️ Setup

Prerequisites

  • Node.js >= 18

Option A: Install from npm (Recommended)

npm install -g agent-skill-loader

Then register in .mcp.json:

"agent-skill-loader": {
  "command": "agent-skill-loader"
}

Option B: Build from Source

git clone https://github.com/back1ply/agent-skill-loader.git
cd agent-skill-loader
npm install
npm run build

Then register in .mcp.json:

"agent-skill-loader": {
  "command": "node",
  "args": ["<path-to-repo>/build/index.js"]
}

📂 Configuration

The server automatically detects its workspace and aggregates skill paths from:

  1. Default: %USERPROFILE%\.claude\plugins\cache (Standard location)
  2. Dynamic Config: skill-paths.json (Located in the project root)

Dynamic Path Management

You do not need to manually edit config files. Use the tool to manage paths at runtime:

  • Add: manage_search_paths(operation="add", path="F:\\My\\Deep\\Skills")
  • Remove: manage_search_paths(operation="remove", path="...")
  • List: manage_search_paths(operation="list") creates/updates skill-paths.json.

🤖 Usage

For Agents

The agent will see five tools:

  • list_skills(): Returns a JSON list of available skills.
  • read_skill(skill_name): Returns the markdown instructions.
  • install_skill(skill_name, target_path?): Copies the folder to .agent/skills/<name>. For security, target_path must be within the current workspace.
  • manage_search_paths(operation, path?): Add, remove, or list skill search paths.
  • debug_info(): Returns diagnostic information (paths, status, warnings).

Example Agent Prompt

"I need to write a DAX measure but I'm not sure about the best practices."

The agent will automatically call list_skills, find writing-dax-measures, call read_skill, and then answer you with expert knowledge.

🔧 Troubleshooting

If skills aren't being discovered, use debug_info() to see:

  • search_paths: Which directories are being scanned
  • path_status: Whether each path exists and is readable
  • warnings: Any errors encountered during scanning (permission denied, empty files, etc.)

Example output:

{
  "workspace_root": "C:/projects/agent-skill-loader",
  "search_paths": {
    "base": ["C:/Users/pc/.claude/plugins/cache"],
    "dynamic": ["F:/My/Skills"],
    "effective": ["C:/Users/pc/.claude/plugins/cache", "F:/My/Skills"]
  },
  "path_status": [
    { "path": "C:/Users/pc/.claude/plugins/cache", "exists": true, "readable": true },
    { "path": "F:/My/Skills", "exists": false, "readable": false }
  ],
  "skills_found": 12,
  "warnings": [
    { "path": "F:/My/Skills", "reason": "Directory does not exist" }
  ]
}

📦 Project Structure

  • src/index.ts: Main server logic.
  • build/: Compiled JavaScript output.
  • package.json: Dependencies (@modelcontextprotocol/sdk, zod).

🤝 Contributing

To add new skills, simply add a folder with a SKILL.md file to one of the watched directories. The server picks them up automatically (no restart required for new files, though caching implementation may vary).

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选