Agent.AI MCP Server

Agent.AI MCP Server

An externally deployable server designed to be hosted on Vercel that can be called from other applications, allowing integration with Agent.AI's Multi-Context Processing capabilities.

Category
访问服务器

README

Agent.AI MCP Server

This is an externally deployable version of the Agent.AI MCP Server, designed to be hosted on Vercel and called from other applications.

Deployment Instructions

Prerequisites

  • GitHub account
  • Vercel account (free tier works)
  • Git installed locally

Steps to Deploy

  1. Create a new GitHub repository

    git init
    git add .
    git commit -m "Initial commit: Agent.AI MCP Server"
    git branch -M main
    git remote add origin https://github.com/YOUR_USERNAME/agentai-mcp-server.git
    git push -u origin main
    
  2. Deploy to Vercel

    • Go to vercel.com
    • Click "New Project"
    • Import your GitHub repository
    • Vercel will automatically detect it as a Node.js project
    • Click "Deploy"
  3. Get your deployment URL

    • After deployment, Vercel will provide a URL like: https://your-project-name.vercel.app
    • This is your MCP server endpoint

Usage

Once deployed, you can call your MCP server from other applications using the Vercel URL.

Example Usage

// In your other app
const mcpServerUrl = 'https://your-project-name.vercel.app';

// Make requests to your MCP server
fetch(mcpServerUrl + '/your-endpoint')
  .then(response => response.json())
  .then(data => console.log(data));

Local Development

To run locally:

npm install
npm start

The server will start on http://localhost:3000

Configuration

  • Port: Automatically set by Vercel, or defaults to 3000 locally
  • Environment Variables: Can be set in Vercel dashboard under Project Settings > Environment Variables

Troubleshooting

  • Ensure your @agentai/mcp-server package is publicly available
  • Check Vercel deployment logs if issues occur
  • Verify your GitHub repository is public or Vercel has access

Important: Authentication Setup

1. Configure Agent.AI API Token

Your MCP server requires an Agent.AI API token to authenticate with Agent.AI services:

  1. Get your API token from Agent.AI
  2. Go to your Vercel project dashboard
  3. Click "Settings" → "Environment Variables"
  4. Add a new variable:
    • Name: API_TOKEN
    • Value: Your Agent.AI API token
  5. Redeploy the project

2. Disable Vercel Authentication

To allow external access to your MCP server, you MUST disable Vercel's built-in authentication:

  1. Go to your Vercel project dashboard
  2. Click "Settings" → "Security"
  3. Disable "Password Protection" and "Vercel Authentication"
  4. Save changes

3. Test Authentication

After setup, your endpoints will return:

  • "authentication": "configured" - Ready to use
  • "authentication": "missing" - API_TOKEN required

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选