Agentic AI with MCP

Agentic AI with MCP

A Model Context Protocol server that enhances LLM capabilities by connecting to Wikipedia, internet search (Tavily), and financial data (Yahoo Finance) tools, enabling contextual responses to user queries.

Category
访问服务器

README

Agentic AI with Model Context Protocol (MCP)

This project implements an Agentic AI system that connects a Groq-hosted LLM (qwen-qwq-32b model) with various tools through a custom Model Context Protocol (MCP) server. The system enhances the LLM's capabilities by providing contextual information from Wikipedia, internet search (via Tavily API), and financial data (via Yahoo Finance API).

About MCP

The Model Context Protocol (MCP) is an open standard developed by Anthropic to standardize how applications provide context to large language models (LLMs). It facilitates seamless integration between LLM applications and external data sources and tools, allowing AI systems to interact dynamically with various services through a standardized interface.

Key Features of MCP:

  • Standardization: Provides a universal protocol for interfacing AI assistants with structured tools and data layers.
  • Modular Architecture: Follows a client–server pattern over a persistent stream, typically mediated by a host AI system.
  • Dynamic Introspection: Supports dynamic discovery of tools and resources through methods like tools/list and resources/list.

Security: Incorporates host-mediated authentication and supports secure transport protocols.​ By adopting MCP, developers can build AI applications that are more interoperable, secure, and capable of complex workflows.​

To add new tools to the MCP server:​

  • Define the Tool: Create a new function that handles the specific task or data retrieval.​
  • Register the Tool: Update the server's tool registry to include the new function, specifying the tool's name and description.​
  • Handle Requests: Ensure the server can route incoming requests to the appropriate tool based on the query.​ This modular approach allows for easy expansion of the server's capabilities, enabling the language model to access a broader range of contextual information.

Features

  • MCP Server: Central hub that provides access to various tools
  • Three Integrated Tools:
    1. Wikipedia Search - for factual information retrieval
    2. Internet Search - powered by Tavily API for comprehensive web results
    3. Yahoo Finance API - for real-time stock and financial data
  • Groq API Integration: Ultra-fast LLM processing using qwen-qwq-32b model
  • Client-Server Architecture: Clean separation between tool management and LLM interaction

Prerequisites

Before you begin, ensure you have the following:

Installation

  1. Clone the repository:

    git clone https://github.com/dev484p/AgenticAI_MCP
    cd AgenticAI_MCP
    
  2. Install dependencies:

    uv add "mcp[cli]"
    
  3. Set up your environment variables: Update Groq and Tavily api key in keys.json

  4. Optional (To run the server with the MCP Inspector for development):

uv run mcp dev server.py
  1. Run the following command to initiate the chatbot:
    uv run client.py
    

Available Tools

The system provides three tools through the MCP server:

  1. Wiki Search:
  • Access Wikipedia information
  • Example query: "Tell me about the history of artificial intelligence"
  1. Internet Search (Tavily):
  • Get comprehensive web search results
  • Example query: "What are the latest developments in quantum computing?"
  1. Yahoo Finance:
  • Access stock prices and financial data
  • Example query: "What is the current price of AAPL stock?"

Refrence

  • https://modelcontextprotocol.io/introduction
  • https://github.com/langchain-ai/langchain-mcp-adapters
  • https://github.com/krishnaik06/MCP-CRASH-Course

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选