agentic-debugger
An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.
README
agentic-debugger
An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.
Works with any MCP-compatible AI coding tool:
- Claude Code
- Cursor
- Windsurf
- Cline
- GitHub Copilot
- Kiro
- Zed
- And more...
Features
- Live code instrumentation - Inject debug logging at specific lines
- Variable capture - Log variable values at runtime
- Multi-language support - JavaScript, TypeScript, and Python
- Browser support - CORS-enabled for browser JS debugging
- Clean removal - Region markers ensure instruments are fully removed
Installation
Using npx (recommended)
Add to your MCP configuration:
{
"mcpServers": {
"debug": {
"command": "npx",
"args": ["-y", "agentic-debugger"]
}
}
}
Configuration file locations:
- Claude Code:
~/.mcp.json - Cursor:
.cursor/mcp.jsonin your project or~/.cursor/mcp.json - Other tools: Check your tool's MCP documentation
Global install
npm install -g agentic-debugger
Then configure:
{
"mcpServers": {
"debug": {
"command": "agentic-debugger"
}
}
}
Available Tools
| Tool | Description |
|---|---|
start_debug_session |
Start HTTP server for log collection |
stop_debug_session |
Stop server and cleanup |
add_instrument |
Insert logging code at file:line |
remove_instruments |
Remove debug code from file(s) |
list_instruments |
Show all active instruments |
read_debug_logs |
Read captured log data |
clear_debug_logs |
Clear the log file |
How It Works
- Start session - Spawns a local HTTP server (default port 9876)
- Add instruments - Injects
fetch()calls that POST to the server - Reproduce bug - Run your code, instruments capture variable values
- Analyze logs - Read the captured data to identify issues
- Cleanup - Remove all instruments and stop the server
Debug Workflow Example
You: "Help me debug why the total is NaN"
AI Assistant:
1. Starts debug session
2. Reads your code to understand the logic
3. Adds instruments at suspicious locations
4. "Please run your code to reproduce the issue"
You: *runs code* "Done"
AI Assistant:
5. Reads debug logs
6. "I see `discount` is undefined at line 15..."
7. Removes instruments
8. Fixes the bug
9. Stops debug session
Instrument Examples
JavaScript/TypeScript
// #region agentic-debug-abc123
fetch('http://localhost:9876/log', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
id: 'abc123',
location: 'cart.js:15',
timestamp: Date.now(),
data: { total, discount, items }
})
}).catch(() => {});
// #endregion agentic-debug-abc123
Python
# region agentic-debug-abc123
try:
import urllib.request as __req, json as __json
__req.urlopen(__req.Request(
'http://localhost:9876/log',
data=__json.dumps({
'id': 'abc123',
'location': 'cart.py:15',
'timestamp': __import__('time').time(),
'data': {'total': total, 'discount': discount}
}).encode(),
headers={'Content-Type': 'application/json'}
))
except: pass
# endregion agentic-debug-abc123
Supported Languages
| Language | Extensions |
|---|---|
| JavaScript | .js, .mjs, .cjs |
| TypeScript | .ts, .tsx |
| Python | .py |
Requirements
- Node.js >= 18.0.0
- An MCP-compatible AI coding assistant
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。