Agentic Developer MCP
An MCP server that wraps OpenAI's Codex CLI to automate repository cloning and code analysis tasks. It enables users to execute complex coding requests on specific Git branches and subfolders using standardized MCP tools.
README
Agentic Developer MCP
This project wraps OpenAI's Codex CLI as an MCP (Model Context Protocol) server, making it accessible through the TeaBranch/open-responses-server middleware.
This engine may be replaced with OpenCode or Amazon Strands
Requirements
- Node 22 (
nvm install 22.15.1 | nvm use 22.15.1) required for Codex
Overview
The setup consists of three main components:
- Codex CLI: OpenAI's command-line interface for interacting with Codex.
- MCP Wrapper Server: A Node.js Express server that forwards MCP requests to Codex CLI and formats responses as MCP.
- open-responses-server: A middleware service that provides Responses API compatibility and MCP support.
Installation
Using Docker (Recommended)
# Clone this repository
git clone https://github.com/yourusername/codex-mcp-wrapper.git
cd codex-mcp-wrapper
# Start the services
./start.sh
This will start:
- Codex MCP wrapper on port 8080
- open-responses-server on port 3000
Manual Installation
# Install dependencies
npm install
# Install Codex CLI globally
npm install -g @openai/codex
# Start the MCP server
node mcp-server.js
# Install the package in development mode
pip install -e .
Usage
You can run the MCP server using either stdio or SSE transport:
# Using stdio (default)
python -m mcp_server
# Using SSE on a specific port
python -m mcp_server --transport sse --port 8000
Tool Documentation
run_codex
Clones a repository, checks out a specific branch (optional), navigates to a specific folder (optional), and runs Codex with the given request.
Parameters
repository(required): Git repository URLbranch(optional): Git branch to checkoutfolder(optional): Folder within the repository to focus onrequest(required): Codex request/prompt to run
Example
{
"repository": "https://github.com/username/repo.git",
"branch": "main",
"folder": "src",
"request": "Analyze this code and suggest improvements"
}
clone_and_write_prompt
Clones a repository, reads the system prompt from .agent/system.md, parses modelId from .agent/agent.json, writes the request to a .prompt file, and invokes the Codex CLI with the extracted model.
Parameters
repository(required): Git repository URLrequest(required): Prompt text to run through Codexfolder(optional, default/): Subfolder within the repository to operate in
Example
{
"repository": "https://github.com/username/repo.git",
"folder": "src",
"request": "Analyze this code and suggest improvements"
}
MCPS Configuration
Place a mcps.json file under the .agent/ directory to register available MCP tools. Codex will load this configuration automatically.
Example .agent/mcps.json:
{
"mcpServers": {
"agentic-developer-mcp": {
"url": "..."
}
}
}
Development
This project uses the MCP Python SDK to implement an MCP server. The primary implementation is in mcp_server/server.py.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。