Agentic Memory Server

Agentic Memory Server

Provides enterprise-grade persistent memory for AI assistants with complete offline operation, enabling intelligent knowledge storage, branch-based organization, and smart search across project domains while keeping all data local and secure.

Category
访问服务器

README

Agentic Memory Server

Enterprise-grade persistent memory for AI assistants - completely offline and secure.

Overview

The Agentic Memory Server provides your AI with intelligent, persistent memory that works entirely offline. No internet required, no data breaches, complete privacy. Your project's knowledge stays local and secure while enabling powerful AI assistance.

graph TB
    subgraph "Your AI Workflow"
        Problem[Complex Project or Question]
        --> Memory{Check Memory}
        Memory -->|Found Context| Retrieve[Retrieve Relevant<br/>Knowledge]
        Memory -->|No Context| Learn[Learn & Store<br/>New Information]

        Learn --> Store[Store in Memory<br/>Organized by Branch]
        Store --> Search[Smart Search<br/>Across All Knowledge]

        Retrieve --> Apply[Apply Knowledge<br/>to Current Task]
        Search --> Apply
        Apply --> Results[Generate Results<br/>& Insights]
        Results --> Update[Update Memory<br/>with New Insights]
        Update --> Complete[Task Complete<br/>Knowledge Preserved]
    end

    subgraph "Memory System"
        MainBranch[Main Branch<br/>Core Knowledge]
        TopicBranches[Topic Branches<br/>Specialized Knowledge]
        CrossRefs[Cross-References<br/>Connected Concepts]
        SQLiteDB[SQLite Database<br/>High Performance Storage]
    end

    Store -.-> MainBranch
    Store -.-> TopicBranches
    Store -.-> CrossRefs
    Store -.-> SQLiteDB

    Search -.-> MainBranch
    Search -.-> TopicBranches
    Search -.-> CrossRefs
    Search -.-> SQLiteDB

What This Does for You

Before Agentic Memory With Agentic Memory
I have to constantly re-explain project details Persistent Memory: AI remembers your codebase and decisions.
The AI forgets everything between conversations. Continuous Learning: The AI builds expertise over time.
No way to organize knowledge by domain. Branch Organization: Separate knowledge by topic/domain.
Can't find related information across projects. Smart Search: Intelligent search across all your knowledge.

Key Features

Complete Offline Operation

  • Zero internet dependency - works entirely local to your machine
  • No data transmission - your project knowledge never leaves your system
  • Enhanced security - eliminates external attack vectors and data breach risks
  • Team collaboration - SQLite database can be shared with your project for instant team onboarding

High-Performance Architecture

  • Sub-second search responses across thousands of entities
  • SQLite-powered storage with intelligent indexing and query optimization
  • Smart relevance scoring - name matches (10pts) > type matches (8pts) > content matches (3pts)
  • Memory optimization - automatic text compression and storage efficiency

Intelligent Organization

  • Branch-based architecture - organize knowledge by domain (frontend, backend, security, etc.)
  • Cross-branch search - find related information across your entire project
  • Auto-relationship detection - automatically connects related concepts
  • Smart observation management - detailed technical knowledge with version tracking

Getting Started

1. Installation & Configuration

Install the agentic memory server:

npm install -g @prism.enterprises/agentic-memory-server

Or run directly with npx:

npx @prism.enterprises/agentic-memory-server

2. IDE Configuration

Add to your IDE's MCP configuration (e.g., Cursor's mcp.json):

{
  "mcp": {
    "servers": {
      "contextual-memory": {
        "command": "npx",
        "args": ["@prism.enterprises/agentic-memory-server"],
        "env": {
          "MEMORY_PATH": "/path/to/your/project",
          "LOG_LEVEL": "info"
        }
      }
    }
  }
}

3. Basic Usage

Create organized knowledge branches:

Create a memory branch called "api-design" for our REST API architecture

Store complex technical information:

Remember that our Kafka cluster processes 500 million events daily with 12 brokers and replication factor 3

Intelligent search across domains:

Search for "authentication" across all branches
Search for "database optimization" in the backend-apis branch

Cross-reference related components:

Link the frontend auth guard to the OAuth2 integration in the security branch

Memory Storage Structure

your-project/
├── .memory/
│   ├── memory.db          # SQLite database (main storage)
│   ├── backups/           # Automatic JSON backups
│   │   ├── main_2024-01-15.json
│   │   └── frontend_2024-01-15.json
│   └── logs/              # Operation logs
├── your-code/
└── ...

Commit .memory/ to version control for team collaboration and project continuity.

Advanced Features

Smart Search Examples

  • "microservices distributed system" → Finds service mesh, orchestration, scaling components
  • "real-time stream processing" → Returns Kafka, Flink, event sourcing entities
  • "API gateway rate limiting" → Discovers security, routing, performance entities

Branch Organization

  • Technical domains: microservices-architecture, kubernetes-deployment
  • Business domains: payment-processing, customer-experience
  • Infrastructure: monitoring-observability, distributed-caching

Team Collaboration

  • Shared SQLite database - commit .memory/ folder to version control
  • Instant project onboarding - new team members get full project context immediately
  • Consistent AI knowledge - entire team's AI assistants work from same knowledge base
  • No setup required - works immediately when project is cloned

Technical Architecture

SQLite-Powered Backend

  • WAL mode for concurrent read/write operations
  • Optimized indexing on names, types, branches, and content
  • Foreign key constraints for data integrity
  • Automatic backup to JSON format

Memory Optimization

  • Intelligent text compression reduces storage by up to 40%
  • Relevance-based search with weighted scoring algorithms
  • Connection pooling handles concurrent operations efficiently
  • Resource monitoring tracks performance and usage patterns

Error Handling

  • Graceful failure recovery for invalid operations
  • Input validation prevents data corruption
  • Edge case management handles empty queries, missing entities
  • Transaction safety ensures data consistency

Privacy & Security

Complete Offline Operation

  • No external API calls - works entirely on your local machine
  • No data transmission - project knowledge stays private
  • Local SQLite storage - industry-standard database security
  • Version control friendly - team sharing through standard Git workflows

Data Protection

  • Project-contained storage - all data stays within your project directory
  • No cloud dependencies - eliminates external security risks
  • Access control - standard file system permissions apply
  • Audit trail - complete operation logging for transparency

More Information

For detailed implementation guides and API documentation, see the Memory Server Documentation.


Transform your AI assistant into a project expert with persistent, intelligent memory - completely offline and secure.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选