Agents Library MCP Server

Agents Library MCP Server

Enables access to agent instruction files and prompts for AI development workflows. Provides tools to retrieve and list development rules, security checks, and common prompts from an agents library through MCP protocol.

Category
访问服务器

README

MCP Server

This is a Python project designed to serve as an MCP (Multi-Cloud Platform) server. It utilizes FastAPI for the web framework and Uvicorn as the ASGI server. The project also includes an agents-library for managing agent-related rules and prompts.

:rocket: Technologies Used

  • Python
  • FastAPI: Web framework for building APIs.
  • Uvicorn: ASGI server.
  • mcp: Multi-Cloud Platform SDK.

:open_file_folder: Project Structure

  • Dockerfile: Used for containerizing the application.
  • compose.yaml: Used for running the application with Docker Compose.
  • requirements.txt: Lists Python dependencies.
  • app/:
    • server.py: The main application server.
  • agents-library/:
    • dev_rules.agents.md: Development-related agent rules.
    • security_checks.agents.md: Security-related agent checks.
    • common_prompts.agents.md: Common prompts for agents.

:checkered_flag: Getting Started

To get started with this project, you need to have Python 3.10+ and Docker installed on your system.

Prerequisites

  • Python 3.10+
  • Docker
  • pip

Installation

  1. Create and Activate Virtual Environment:

    python3 -m venv venv
    source venv/bin/activate
    
  2. Install Dependencies:

    pip install -r requirements.txt
    

:hammer_and_wrench: Building and Running

You can run the server using Docker Compose or directly with Uvicorn.

Using Docker Compose

To run the server with Docker Compose, use the following command:

docker compose up

Using Uvicorn

To run the server with Uvicorn, use the following command:

uvicorn app.server:app --host 0.0.0.0 --port 8080

:scroll: Development Conventions

  • Virtual Environments: Always use a virtual environment for dependency management.
  • Dependencies: All Python dependencies should be listed in requirements.txt.

:electric_plug: API Endpoints

The following API endpoints are available:

  • POST /test/call_tool: Test endpoint for direct tool invocation.
  • POST /test/read_resource: Test endpoint for direct resource invocation.

The MCP server also exposes the following tools:

  • get_agents_instructions: Retrieves a specific AGENTS.md file for providing AI with instructions and context.
  • list_agents_instructions: Lists all available AGENTS.md files.

:gemini: Adding to gemini-cli

To add this server to gemini-cli, you need to edit your settings.json file. You can find this file in ~/.gemini/settings.json (user settings) or in .gemini/settings.json (project settings).

Add the following to your settings.json file:

{
  "mcpServers": {
    "httpServer": {
      "httpUrl": "http://<ip-address>:8080"
    }
  }
}

Using the mcp tool

Once the mcp-server is configured in gemini-cli, you can use the mcp tool to interact with the server. For example, to list all available agent instructions:

gemini mcp list_agents_instructions

To retrieve a specific agent instruction file:

gemini mcp get_agents_instructions --file_name dev_rules.agents.md

See reference.

:balance_scale: License

This project is licensed under the Apache License 2.0.

:pencil: Author

This project was started in 2025 by Nicholas Wilde.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选