Agile Planner MCP Server

Agile Planner MCP Server

Automatically generates structured agile backlogs including epics, features, and user stories from natural language descriptions within AI-powered IDEs. It streamlines project management by creating AI-optimized markdown files and directory structures to guide step-by-step implementation.

Category
访问服务器

README

MseeP.ai Security Assessment Badge

Agile Planner MCP Server (v1.7.3) - AI-Powered Agile Backlog Generator

smithery badge License: MIT MCP Compatible Windsurf Ready Cascade Integrated npm version GitHub Stars

<img alt="Install in Windsurf" src="https://img.shields.io/badge/Windsurf-Windsurf?style=flat-square&label=Install%20Agile%20Planner&color=5fa8fb"> <img alt="Install in Cascade" src="https://img.shields.io/badge/Cascade-Cascade?style=flat-square&label=Install%20Agile%20Planner&color=9457EB"> <img alt="Install in Cursor" src="https://img.shields.io/badge/Cursor-Cursor?style=flat-square&label=Install%20Agile%20Planner&color=24bfa5">

Agile Planner MCP automatically generates complete agile backlogs (Epics, User Stories, MVP, iterations) or specific features from a simple description, directly within Windsurf, Cascade, or Cursor, with no technical skills required.

Latest improvements (v1.7.3):

  • Correction du mode MCP pour generateFeature: Amélioration robuste de l'extraction des user stories
  • Structure RULE 3 renforcée: Creation cohérente des dossiers epics/features/user-stories
  • Résolution du problème Notepad sur Windows: Normalisation des flux stderr/stdout en mode MCP
  • Logs de diagnostic détaillés: Identification plus facile des problèmes
  • Restructuration du projet: Organisation claire des fichiers de test et temporaires
  • Mise à jour des guides d'utilisation: Instructions complètes pour Windsurf, Claude et Cursor
  • See CHANGELOG.md for full details.

Previous improvements (v1.7.1):

  • Refonte complète de la documentation MCP: Documentation détaillée de l'architecture serveur MCP avec diagrammes Mermaid.
  • Réduction de la complexité cognitive: Refactorisation majeure des modules critiques (json-parser, mcp-router).
  • Amélioration de la robustesse: Meilleure gestion des erreurs et tests d'intégration E2E optimisés.
  • See CHANGELOG.md for details.

❌ Without Agile Planner MCP

Creating agile backlogs manually is time-consuming and error-prone:

  • ❌ Hours spent writing user stories, acceptance criteria, and tasks
  • ❌ Inconsistent formatting and structure across different projects
  • ❌ No clear implementation guidance for AI coding assistants
  • ❌ Manual prioritization and organization without strategic framework

✅ With Agile Planner MCP

Gestion d’erreur centralisée

  • Tous les retours d’erreur des fonctions generateBacklog et generateBacklogDirect sont désormais formatés par handleBacklogError pour garantir l’uniformité du JSON et la robustesse de l’audit.
  • Les exemples d’erreur affichent le format : { success: false, error: { message: ... } }

Agile Planner MCP generates complete, structured agile backlogs with precise AI-guided annotations in seconds:

  • Complete backlog structure with epics, features, user stories, and orphan stories
  • AI-optimized annotations that guide implementation step-by-step
  • Progress tracking with task checkboxes and dependency management
  • Centralized organization in a dedicated .agile-planner-backlog folder
  • Intelligent feature organization that automatically associates features with relevant epics

📑 Documentation

This documentation has been reorganized for better navigation:

User Guides

Developer Documentation

Helper Functions

  • createApiMessages(project) - Génère la paire de messages système/utilisateur pour l'IA. Le paramètre project peut être une chaîne de type "Nom: description" ou un objet { name, description }.

Note TDD : Les assertions sur les erreurs doivent vérifier le format unifié { success: false, error: { message: ... } }. Toute modification du format d’erreur nécessite la mise à jour des tests d’intégration.

Architecture Documentation

🚦 Setting up in Windsurf / Cascade / Cursor

Ask your administrator or technical team to add this MCP server to your workspace configuration:

  1. Copy .env.example to .env and fill in your OPENAI_API_KEY or GROQ_API_KEY.

Option 1: Using a local installation

{
  "mcpServers": {
    "agile-planner": {
      "command": "node",
      "args": ["D:/path/to/agile-planner/server/index.js"],
      "env": {
        "MCP_EXECUTION": "true",
        "OPENAI_API_KEY": "sk-..."
      }
    }
  }
}

Option 2: Using the NPM package

{
  "mcpServers": {
    "agile-planner": {
      "command": "npx",
      "args": ["agile-planner-mcp-server"],
      "env": {
        "MCP_EXECUTION": "true",
        "OPENAI_API_KEY": "sk-..."
      }
    }
  }
}

🧠 How It Works

  1. Describe your project in plain English, providing as much detail as possible.

    SaaS task management system for teams with Slack integration, 
    mobile support, and GDPR compliance.
    
  2. Agile Planner MCP processes your description through a robust validation pipeline:

    • 🤖 Leverages OpenAI or Groq LLMs to generate the backlog structure
    • 🧪 Validates the structure against a comprehensive JSON schema
    • 🔍 Enhances features with acceptance criteria and tasks
    • 📝 Organizes stories into epics and features
    • 🏗️ Creates a complete directory structure with markdown files
  3. Receive a fully structured agile backlog in seconds:

Structure du dossier généré

.agile-planner-backlog/
├── epics/
│   └── [epic-slug]/
│       ├── epic.md
│       └── features/
│           └── [feature-slug]/
│               ├── feature.md
│               └── user-stories/
│                   ├── [story-1].md
│                   └── [story-2].md
├── orphan-stories/
│   ├── [story-orpheline-1].md
│   └── [story-orpheline-2].md
└── backlog.json

Note : Les dossiers planning/mvp et planning/iterations sont supprimés. Toutes les user stories sont générées dans leur arborescence épics/features ou dans orphan-stories si elles ne sont rattachées à aucune feature/epic. Le fichier backlog.json ne contient plus de sections mvp ou iterations.

All files include AI-friendly instructions to guide implementation. See the examples folder for sample outputs.

Commands

Agile Planner MCP supports the following commands:

Generate a Complete Backlog

// In Windsurf or Cascade
mcp0_generateBacklog({
  projectName: "My Project",
  projectDescription: "A detailed description of the project...",
  outputPath: "optional/custom/path"
})

// CLI
npx agile-planner-mcp-server backlog "My Project" "A detailed description of the project..."

Generate a Specific Feature

// In Windsurf or Cascade
mcp0_generateFeature({
  featureDescription: "A detailed description of the feature to generate",
  storyCount: 3,  // Optional: number of user stories to generate (min: 3)
  businessValue: "High", // Optional: business value of this feature
  iterationName: "iteration-2", // Optional: target iteration (default: 'next')
  epicName: "Optional Epic Name", // Optional: specify an epic or let the system find/create one
  outputPath: "optional/custom/path" // Optional: custom output directory
})

// CLI
npx agile-planner-mcp-server feature "A detailed description of the feature to generate"

🔄 Environment Variables

Variable Description Default
MCP_EXECUTION Required - Must be set to "true" for MCP mode -
OPENAI_API_KEY OpenAI API key for generating backlog -
GROQ_API_KEY Alternative Groq API key -
DEBUG Enable debug mode for additional logs false
TEST_MODE Enable test mode (mock generation) false
AGILE_PLANNER_OUTPUT_ROOT Base directory for output current dir

📜 License

Agile Planner MCP Server is licensed under the MIT License with Commons Clause. See the LICENSE file for the complete license text.

👥 Support

For support, please open an issue on the GitHub repository or contact your Windsurf/Cascade/Cursor administrator.


☕️ Support the Project

<a href="https://buymeacoffee.com/wiscale" target="_blank"> <img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px; width: 217px;" > </a>

If you find this project useful, you can support its development by buying me a coffee on BuyMeACoffee!

🚀 Get Windsurf

<a href="https://windsurf.com/refer?referral_code=8f4980f9ec" target="_blank"> <img src="https://img.shields.io/badge/Windsurf-Get%20250%20Bonus%20Credits-5fa8fb?style=for-the-badge" alt="Get Windsurf with bonus credits" > </a>

Thank you 🙏

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选