Agile Planner MCP Server
Automatically generates structured agile backlogs including epics, features, and user stories from natural language descriptions within AI-powered IDEs. It streamlines project management by creating AI-optimized markdown files and directory structures to guide step-by-step implementation.
README
Agile Planner MCP Server (v1.7.3) - AI-Powered Agile Backlog Generator
<img alt="Install in Windsurf" src="https://img.shields.io/badge/Windsurf-Windsurf?style=flat-square&label=Install%20Agile%20Planner&color=5fa8fb"> <img alt="Install in Cascade" src="https://img.shields.io/badge/Cascade-Cascade?style=flat-square&label=Install%20Agile%20Planner&color=9457EB"> <img alt="Install in Cursor" src="https://img.shields.io/badge/Cursor-Cursor?style=flat-square&label=Install%20Agile%20Planner&color=24bfa5">
Agile Planner MCP automatically generates complete agile backlogs (Epics, User Stories, MVP, iterations) or specific features from a simple description, directly within Windsurf, Cascade, or Cursor, with no technical skills required.
Latest improvements (v1.7.3):
- Correction du mode MCP pour generateFeature: Amélioration robuste de l'extraction des user stories
- Structure RULE 3 renforcée: Creation cohérente des dossiers epics/features/user-stories
- Résolution du problème Notepad sur Windows: Normalisation des flux stderr/stdout en mode MCP
- Logs de diagnostic détaillés: Identification plus facile des problèmes
- Restructuration du projet: Organisation claire des fichiers de test et temporaires
- Mise à jour des guides d'utilisation: Instructions complètes pour Windsurf, Claude et Cursor
- See CHANGELOG.md for full details.
Previous improvements (v1.7.1):
- Refonte complète de la documentation MCP: Documentation détaillée de l'architecture serveur MCP avec diagrammes Mermaid.
- Réduction de la complexité cognitive: Refactorisation majeure des modules critiques (json-parser, mcp-router).
- Amélioration de la robustesse: Meilleure gestion des erreurs et tests d'intégration E2E optimisés.
- See CHANGELOG.md for details.
❌ Without Agile Planner MCP
Creating agile backlogs manually is time-consuming and error-prone:
- ❌ Hours spent writing user stories, acceptance criteria, and tasks
- ❌ Inconsistent formatting and structure across different projects
- ❌ No clear implementation guidance for AI coding assistants
- ❌ Manual prioritization and organization without strategic framework
✅ With Agile Planner MCP
Gestion d’erreur centralisée
- Tous les retours d’erreur des fonctions
generateBacklogetgenerateBacklogDirectsont désormais formatés parhandleBacklogErrorpour garantir l’uniformité du JSON et la robustesse de l’audit. - Les exemples d’erreur affichent le format :
{ success: false, error: { message: ... } }
Agile Planner MCP generates complete, structured agile backlogs with precise AI-guided annotations in seconds:
- ✅ Complete backlog structure with epics, features, user stories, and orphan stories
- ✅ AI-optimized annotations that guide implementation step-by-step
- ✅ Progress tracking with task checkboxes and dependency management
- ✅ Centralized organization in a dedicated
.agile-planner-backlogfolder - ✅ Intelligent feature organization that automatically associates features with relevant epics
📑 Documentation
This documentation has been reorganized for better navigation:
User Guides
- Guide d'intégration MCP - Guide d'intégration avec Claude, Cursor et Windsurf IDE
- Guide d'utilisation optimal - Guide d'utilisation détaillé
- Guide de migration - Guide pour migrer depuis les versions précédentes
Developer Documentation
- Développement - Guide de développement
- Spécifications MCP - Spécification du protocole MCP
- Problèmes connus - Liste des problèmes connus et dette technique
- Plan de refactorisation - Plan détaillé de refactorisation du code
- Plan de refactorisation des tests - Plan de correction des tests
- Roadmap - Feuille de route des versions futures
- Architecture MCP - Architecture complète du serveur MCP
- Système de génération Markdown - Architecture du générateur markdown
- Format du backlog - Spécification du format JSON de backlog
Helper Functions
- createApiMessages(project) - Génère la paire de messages système/utilisateur pour l'IA. Le paramètre
projectpeut être une chaîne de type"Nom: description"ou un objet{ name, description }.
Note TDD : Les assertions sur les erreurs doivent vérifier le format unifié
{ success: false, error: { message: ... } }. Toute modification du format d’erreur nécessite la mise à jour des tests d’intégration.
Architecture Documentation
- Design - Design général du projet
- Format de backlog - Format du backlog généré
- Diagramme de validation de backlog - Diagramme de validation
- Compatibilité Multi-LLM - Compatibilité avec plusieurs LLMs
🚦 Setting up in Windsurf / Cascade / Cursor
Ask your administrator or technical team to add this MCP server to your workspace configuration:
- Copy
.env.exampleto.envand fill in yourOPENAI_API_KEYorGROQ_API_KEY.
Option 1: Using a local installation
{
"mcpServers": {
"agile-planner": {
"command": "node",
"args": ["D:/path/to/agile-planner/server/index.js"],
"env": {
"MCP_EXECUTION": "true",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
Option 2: Using the NPM package
{
"mcpServers": {
"agile-planner": {
"command": "npx",
"args": ["agile-planner-mcp-server"],
"env": {
"MCP_EXECUTION": "true",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
🧠 How It Works
-
Describe your project in plain English, providing as much detail as possible.
SaaS task management system for teams with Slack integration, mobile support, and GDPR compliance. -
Agile Planner MCP processes your description through a robust validation pipeline:
- 🤖 Leverages OpenAI or Groq LLMs to generate the backlog structure
- 🧪 Validates the structure against a comprehensive JSON schema
- 🔍 Enhances features with acceptance criteria and tasks
- 📝 Organizes stories into epics and features
- 🏗️ Creates a complete directory structure with markdown files
-
Receive a fully structured agile backlog in seconds:
Structure du dossier généré
.agile-planner-backlog/
├── epics/
│ └── [epic-slug]/
│ ├── epic.md
│ └── features/
│ └── [feature-slug]/
│ ├── feature.md
│ └── user-stories/
│ ├── [story-1].md
│ └── [story-2].md
├── orphan-stories/
│ ├── [story-orpheline-1].md
│ └── [story-orpheline-2].md
└── backlog.json
Note : Les dossiers
planning/mvpetplanning/iterationssont supprimés. Toutes les user stories sont générées dans leur arborescence épics/features ou dansorphan-storiessi elles ne sont rattachées à aucune feature/epic. Le fichierbacklog.jsonne contient plus de sectionsmvpouiterations.
All files include AI-friendly instructions to guide implementation. See the examples folder for sample outputs.
Commands
Agile Planner MCP supports the following commands:
Generate a Complete Backlog
// In Windsurf or Cascade
mcp0_generateBacklog({
projectName: "My Project",
projectDescription: "A detailed description of the project...",
outputPath: "optional/custom/path"
})
// CLI
npx agile-planner-mcp-server backlog "My Project" "A detailed description of the project..."
Generate a Specific Feature
// In Windsurf or Cascade
mcp0_generateFeature({
featureDescription: "A detailed description of the feature to generate",
storyCount: 3, // Optional: number of user stories to generate (min: 3)
businessValue: "High", // Optional: business value of this feature
iterationName: "iteration-2", // Optional: target iteration (default: 'next')
epicName: "Optional Epic Name", // Optional: specify an epic or let the system find/create one
outputPath: "optional/custom/path" // Optional: custom output directory
})
// CLI
npx agile-planner-mcp-server feature "A detailed description of the feature to generate"
🔄 Environment Variables
| Variable | Description | Default |
|---|---|---|
MCP_EXECUTION |
Required - Must be set to "true" for MCP mode | - |
OPENAI_API_KEY |
OpenAI API key for generating backlog | - |
GROQ_API_KEY |
Alternative Groq API key | - |
DEBUG |
Enable debug mode for additional logs | false |
TEST_MODE |
Enable test mode (mock generation) | false |
AGILE_PLANNER_OUTPUT_ROOT |
Base directory for output | current dir |
📜 License
Agile Planner MCP Server is licensed under the MIT License with Commons Clause. See the LICENSE file for the complete license text.
👥 Support
For support, please open an issue on the GitHub repository or contact your Windsurf/Cascade/Cursor administrator.
☕️ Support the Project
<a href="https://buymeacoffee.com/wiscale" target="_blank"> <img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px; width: 217px;" > </a>
If you find this project useful, you can support its development by buying me a coffee on BuyMeACoffee!
🚀 Get Windsurf
<a href="https://windsurf.com/refer?referral_code=8f4980f9ec" target="_blank"> <img src="https://img.shields.io/badge/Windsurf-Get%20250%20Bonus%20Credits-5fa8fb?style=for-the-badge" alt="Get Windsurf with bonus credits" > </a>
Thank you 🙏
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
