Agileday MCP Server
Connects Agileday's competence and employee data with LLMs, enabling natural language queries to find experts by skill and retrieve employee competence profiles directly from your chat interface.
README
Agileday MCP Server
A Model Context Protocol (MCP) server for Agileday.
This server bridges Agileday's competence and employee data with LLMs (like Claude Desktop or Cursor). It allows you to ask natural language questions about your organization's skills, find experts, and explore competence profiles.
Capabilities
This server implements the following tools:
- find_experts_with_skill
- Query: "Who knows React?"
- Action: Searches for employees who possess a specific skill and returns their proficiency levels.
- get_employee_competence_profile
- Query: "What are Jane Doe's top skills?"
- Action: Retrieves a full list of skills, proficiency levels, and motivation for a specific employee.
- list_organization_skills
- Query: "What skills do we have in the organization?"
- Action: Retrieves the full taxonomy of skills available in your Agileday workspace, grouped by category. This helps the AI understand exactly which terms to search for and avoids guessing.
Configuration
You need the following environment variables to run the server:
| Variable | Description | Example |
|---|---|---|
AGILEDAY_TENANT_ID |
Your company slug (subdomain). | acme (for acme.agileday.io) |
AGILEDAY_API_TOKEN |
Your API Bearer token. | eyJhbGciOi... |
Quick Start (Docker)
The easiest way to run the server is using the pre-built Docker image from the GitHub Container Registry.
1. Run with Claude Desktop
Add this configuration to your claude_desktop_config.json:
{
"mcpServers": {
"agileday": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "AGILEDAY_TENANT_ID=your_tenant_id",
"-e", "AGILEDAY_API_TOKEN=your_api_token",
"ghcr.io/eficode/mcp-agileday:latest"
]
}
}
}
Option 2: Docker
-
Clone the repository:
git clone [https://github.com/yourusername/agileday-mcp-server.git](https://github.com/yourusername/agileday-mcp-server.git) cd agileday-mcp-server -
Build the image:
docker build -t agileday-mcp-server . -
Configure Claude Desktop: Add the following to your
claude_desktop_config.json(usually located at~/Library/Application Support/Claude/on macOS or%APPDATA%\Claude\on Windows).{ "mcpServers": { "agileday": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "AGILEDAY_TENANT_ID=your_tenant_id", "-e", "AGILEDAY_API_TOKEN=your_api_token", "agileday-mcp-server" ] } } } -
Restart Claude Desktop.
Option 3: Local Python
-
Clone the repository and install dependencies:
git clone [https://github.com/yourusername/agileday-mcp-server.git](https://github.com/yourusername/agileday-mcp-server.git) cd agileday-mcp-server pip install -r requirements.txt -
Configure Claude Desktop: Update your
claude_desktop_config.jsonto point to the python script:{ "mcpServers": { "agileday": { "command": "python3", "args": ["/absolute/path/to/agileday_server.py"], "env": { "AGILEDAY_TENANT_ID": "your_tenant_id", "AGILEDAY_API_TOKEN": "your_api_token" } } } }
Option 4: Run as service
To deploy this as a standalone service (e.g., for remote access or clients that support HTTP transport), use the http transport mode.
```bash
docker run -d \
-p 8000:8000 \
-e AGILEDAY_TENANT_ID=your_tenant \
-e AGILEDAY_API_TOKEN=your_token \
ghcr.io/eficode/mcp-agileday:latest \
--transport http
```
The server will be available at:
Universal Endpoint: http://localhost:8000/mcp (Supports both SSE stream and POST messages)
Health Check: http://localhost:8000/health
Example Prompts
Once connected, you can ask Claude questions like:
- "Who are the experts in Python at our company?"
- "Find me someone who knows Service Design and has a high proficiency."
- "What is Jane Doe's competence profile?"
- "Do we have enough people with Kubernetes skills?"
Security Note
- API Tokens: Never commit your
AGILEDAY_API_TOKENto version control. Always pass it via environment variables or your local config file. - ReadOnly Access: It is recommended to use an API token with read-only permissions if possible, as this tool only fetches data.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository.
- Create your feature branch (
git checkout -b feature/AmazingFeature). - Commit your changes (
git commit -m 'Add some AmazingFeature'). - Push to the branch (
git push origin feature/AmazingFeature). - Open a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。