AI Agent MCP Server
A Model Context Protocol server implementation built with FastAPI that enables AI agent interactions. Provides a structured foundation for building AI-powered applications with proper data validation and modern Python tooling.
README
AI Agent MCP Server
A Model Context Protocol (MCP) server implementation for AI agent interactions, built with FastAPI and Python 3.11+.
Quick Start
Prerequisites
- Python 3.11+
- Podman
- Git
- NuShell (for setup script)
Setup
# Run automated setup script
nu scripts/setup.nu
# Or run in silent mode (CI/CD)
nu scripts/setup.nu --silent
Development
# Activate virtual environment
source .venv/bin/activate # macOS/Linux
# or
.venv\Scripts\activate # Windows
# Run development server
task dev
# Run tests
task test
# Run linting
task lint
Project Structure
mcp/
├── src/mcp_server/ # Main application package
│ ├── core/ # Core utilities and exceptions
│ ├── models/ # Data models
│ ├── services/ # Business logic
│ ├── repositories/ # Data access layer
│ ├── tools/ # MCP tools
│ ├── api/ # FastAPI routes and schemas
│ └── utils/ # Utility functions
├── tests/ # Test suite
│ ├── unit/ # Unit tests
│ ├── integration/ # Integration tests
│ └── e2e/ # End-to-end tests
├── scripts/ # Setup and utility scripts
├── docs/ # Documentation
└── artifacts/ # SDLC artifacts
Deployment
Container images are automatically built on all branches and pushed to GitHub Container Registry only on release/* branches. All container images are scanned for security vulnerabilities before deployment.
Security Scanning
All container builds are automatically scanned for vulnerabilities using Trivy:
- Scope: CVEs in OS packages, Python dependencies, and base images
- Severity Policy:
- CRITICAL/HIGH: Blocks deployment (build fails)
- MEDIUM/LOW: Logged as warnings, deployment continues
- Unfixed Vulnerabilities: Ignored (no remediation available)
- Scan Results: Uploaded to GitHub Security tab for centralized tracking
- Database Updates: Trivy vulnerability database refreshed daily
- Documented Exceptions: Tracked in
.trivyignorewith risk assessments
View vulnerability reports: Repository → Security → Code Scanning
Known Issues (.trivyignore):
- CVE-2025-7709 (libsqlite3-0) - Awaiting Debian security update
- CVE-2025-8869 (pip) - Awaiting Python base image update
Release Process
- Create release branch:
git checkout -b release/v0.1.0 - Update version in
pyproject.toml - Push to trigger automated build, security scan, and push:
git push -u origin release/v0.1.0 - Security scan validates image (blocks if CRITICAL/HIGH CVEs found)
- Container image automatically pushed to
ghcr.iowith version tags (if scan passes)
Using Pre-built Images
# Pull latest image
podman pull ghcr.io/USERNAME/REPO:latest
# Pull specific version
podman pull ghcr.io/USERNAME/REPO:0.1.0
# Pull by commit SHA
podman pull ghcr.io/USERNAME/REPO:abc123def
# Run container
podman run -d -p 8000:8000 ghcr.io/USERNAME/REPO:latest
Building Locally
# Build with Taskfile
task container:build
# Build with custom tag
TAG=custom task container:build
# Run locally built image
task container:run
Documentation
- Setup Guide - Detailed setup instructions
- Architecture - System architecture
- Contributing - Contribution guidelines
- API Documentation - API reference
Technology Stack
- FastAPI - Modern Python web framework
- Pydantic - Data validation
- UV - Fast Python package manager
- Taskfile - Task automation
- Devbox - Isolated development environment
- Pytest - Testing framework
- Ruff - Linting and formatting
- MyPy - Static type checking
License
TBD
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。