AI Conversation Logger
Enables AI assistants to automatically log and manage conversation history with developers in structured markdown format. Provides powerful search and context suggestions to help AI understand project history and maintain continuity across sessions.
README
AI Conversation Logger MCP
An intelligent MCP (Model Context Protocol) server designed specifically for AI assistants to automatically log and manage conversation history with developers.
🎯 Core Features
- 🤖 AI-Driven Logging - All content is determined and provided by the AI assistant
- 📝 Pure Save Mode - MCP only formats and stores, no content extraction or analysis
- 🔄 Designed for AI Retrospection - Log format optimized for AI to quickly understand project history
- 🏷️ Smart Organization - Auto-organize by project and date with tagging support
- 🔍 Powerful Search - Multi-dimensional search by keywords, files, tags, and time range
- 📊 Context Suggestions - Smart recommendations based on file associations
🚀 Quick Start
1. Install Dependencies
npm install
2. Build Project
npm run build
3. Configure Claude Code
Add MCP server configuration to Claude Code's config file (~/.claude.json):
{
"mcpServers": {
"conversation-logger": {
"command": "node",
"args": ["/path/to/ai-conversation-logger-mcp/dist/index.js"]
}
}
}
4. Restart Claude Code
Restart Claude Code to apply the configuration.
📚 API Tools
1. log_conversation - Core Logging Tool
Records every AI-user interaction with structured information:
interface LogConversationParams {
userRequest: string; // User's original request + uploaded file descriptions
aiTodoList: string[]; // AI's execution plan (list even for view-only tasks)
aiSummary: string; // AI's operation summary (3-5 sentences)
fileOperations?: string[]; // File operations in format: "action filepath - description"
title?: string; // Conversation title (optional)
tags?: string[]; // Tag array (optional)
project?: string; // Project name (auto-detected if not provided)
}
2. search_conversations - Search Tool
Search through conversation history with multiple filters:
interface SearchParams {
keywords?: string[]; // Keyword search
filePattern?: string; // File name pattern search
days?: number; // Recent N days
project?: string; // Project filter (defaults to current)
tags?: string[]; // Tag filter
limit?: number; // Result limit (default: 10)
}
3. get_context_suggestions - Context Recommendations
Get relevant historical context based on current work:
interface ContextParams {
currentInput: string; // Current user input
currentFiles?: string[]; // Currently involved files
project?: string; // Project filter (optional)
}
📁 Storage Structure
Logs are stored in the project's ai-logs/ directory:
project-root/
├── ai-logs/
│ ├── 2025-08-07.md # Daily conversation logs
│ ├── 2025-08-06.md
│ └── config.json # Project configuration
├── src/
└── ...
📝 Log Format
Each conversation is recorded with the following structure:
## [Timestamp] Title #tags
### 🗣️ User Request
[Original user request]
### 📋 AI Execution Plan
- [x] Completed task
- [ ] Pending task
### 🤖 AI Summary
[Summary of what was accomplished]
### 📂 File Operations
- **Created** `path/to/file` - Purpose description
- **Modified** `path/to/file` - What was changed
- **Deleted** `path/to/file` - Reason for deletion
### 🏷️ Tags
#module #technology #type
🎯 Usage Principles
When to Log
All conversations should be logged, including:
- New feature development
- Bug fixes (any size)
- Code refactoring
- Configuration changes
- Code explanations and analysis
- Technical Q&A
- Code reviews
- Any project-related dialogue
Key Points
- AI-Driven Content - AI determines what information to log
- Complete Context - Include all relevant details for future reference
- Focus on "What" not "How" - Emphasize functionality over technical details
- Consistent Format - Maintain standardized markdown structure
🛠️ Development
Development Mode
npm run dev
Run Tests
npm test
Code Linting
npm run lint
npm run lint:fix
TypeScript Check
npm run type-check
🔧 Technical Stack
- TypeScript - Type-safe development
- MCP SDK - Model Context Protocol implementation
- Node.js - Runtime environment
- Jest - Testing framework
📄 License
MIT
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📮 Contact
For issues or suggestions, please open an issue on GitHub.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。