AI Development Guidelines MCP Server
Provides AI agents with professional coding standards, development best practices, and context-aware guidance through static documentation and AI-powered custom recommendations. Enables agents to access comprehensive development guidelines including coding rules, debugging techniques, and AI steering instructions.
README
AI Development Guidelines MCP Server
An MCP (Model Context Protocol) server that provides AI agents with professional development guidelines, coding standards, and best practices. The server uses an AI orchestration layer powered by Anthropic Claude to intelligently select and deliver the right documentation based on incoming agent requests.
Features
- Professional Coding Rules: Comprehensive standards for writing production-quality code
- Development Skills: Best practices for problem-solving, debugging, testing, and more
- AI Steering Instructions: Context-aware guidance for AI agents
- AI Orchestration: Intelligent document selection using Claude
- MCP Protocol: Standard protocol for AI agent communication
- CI/CD Pipeline: GitLab CI/CD with automated testing and deployment
- Token Optimization: Monitors and optimizes token usage (~60% compression)
- Feedback Collection: Tracks usage patterns and performance metrics
- Compressed Caching: Efficient delivery with gzip compression (59.7% reduction)
Architecture
The server implements the Model Context Protocol and provides:
- Resources: Documentation files accessible via MCP resource URIs
- Tools: Four main tools for retrieving guidelines:
get_coding_rules: Professional coding standardsget_development_skills: Development best practicesget_steering_instructions: AI agent guidanceget_custom_guidance: AI-curated context-specific advice
Installation
Prerequisites
- Python 3.11+
- Anthropic API key (optional, but required for
get_custom_guidancetool)
Setup
-
Clone this repository
-
Install dependencies:
pip install -r requirements.txtor with uv:
uv sync -
(Optional) Set your Anthropic API key for AI-powered custom guidance:
export ANTHROPIC_API_KEY="your-api-key-here"Note: The server works without an API key, but the
get_custom_guidancetool will return a graceful error message directing users to the other three tools. The static documentation tools (get_coding_rules,get_development_skills,get_steering_instructions) work fully without any API key.
Usage
Running the MCP Server
python main.py
The server runs as an MCP stdio server, communicating over standard input/output.
MCP Client Configuration
To use this server with an MCP client (like Claude Desktop), add it to your MCP configuration:
{
"mcpServers": {
"ai-dev-guidelines": {
"command": "python",
"args": ["/path/to/this/repo/main.py"],
"env": {
"ANTHROPIC_API_KEY": "your-api-key"
}
}
}
}
Available Tools
1. get_coding_rules
Get professional coding rules and standards for writing production-quality code.
# No parameters required
result = await session.call_tool("get_coding_rules", {})
2. get_development_skills
Get development skills, best practices, and professional techniques.
# No parameters required
result = await session.call_tool("get_development_skills", {})
3. get_steering_instructions
Get AI agent steering instructions for context-aware development.
# No parameters required
result = await session.call_tool("get_steering_instructions", {})
4. get_custom_guidance
Get AI-curated guidance tailored to your specific development context.
# Requires query parameter
result = await session.call_tool("get_custom_guidance", {
"query": "How do I implement secure authentication in a Python web app?",
"context": "Building a Flask application with user login" # optional
})
Available Resources
The server exposes three documentation resources:
guidelines://rules- Professional Coding Rulesguidelines://skills- Development Skills & Practicesguidelines://steering- AI Steering Instructions
Configuration
Edit config.yaml to customize:
- Server name and version
- Documentation file paths
- AI model settings (model, max_tokens, temperature)
- Tool descriptions
Documentation
The server includes three main documentation files in the docs/ directory:
- rules.md: Professional coding standards, security practices, testing requirements
- skills.md: Development skills from debugging to API design
- steering.md: AI agent guidance for effective code generation
You can customize these documents to match your organization's standards.
Project Structure
.
├── main.py # Entry point
├── config.yaml # Configuration
├── src/
│ ├── mcp_server.py # Main MCP server implementation
│ ├── ai_orchestrator.py # AI-powered context selector
│ └── utils/
│ ├── config.py # Configuration management
│ └── document_loader.py # Documentation file loader
├── docs/
│ ├── rules.md # Coding rules
│ ├── skills.md # Development skills
│ └── steering.md # AI steering
└── README.md
How It Works
- Agent Request: An AI agent calls one of the MCP tools
- Document Loading: The server loads relevant documentation from markdown files
- AI Orchestration (for custom guidance): Claude analyzes the query and selects relevant content
- Response: The server returns targeted, actionable guidance
Development
Running Tests
pytest
Adding New Documentation
- Create or edit markdown files in
docs/ - Update
config.yamlto reference new files - Restart the server
Customizing AI Behavior
Edit the system prompts in src/ai_orchestrator.py to change how the AI selects and presents documentation.
Environment Variables
ANTHROPIC_API_KEY: Required for AI orchestration features
License
MIT
Contributing
Contributions are welcome! Please feel free to submit pull requests or open issues.
Support
For issues or questions, please open a GitHub issue.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。