AI Development Pipeline MCP

AI Development Pipeline MCP

A Model Context Protocol server that enables seamless integration between Claude AI and development tools like VSCode, Augment, Vercel, Airtable, and Square.

Category
访问服务器

README

AI Development Pipeline MCP Integration

A comprehensive Model Context Protocol (MCP) server implementation that enables seamless integration between Claude AI, VSCode, Augment, and various cloud services including Vercel, Airtable, and Square.

🚀 Features

  • Local MCP Server: Direct stdio integration with Claude Desktop
  • Cloud MCP Server: HTTP endpoint for web-based Claude integration
  • 7 Powerful MCP Tools: File operations, shell commands, and AI agent integration
  • Multi-Platform Support: Windows (PowerShell) and Unix (Bash) startup scripts
  • Production Ready: Vercel deployment configuration included

📋 Prerequisites

  • Node.js 18+ and npm
  • TypeScript and ts-node
  • Claude Desktop (for local integration)
  • Vercel account (for cloud deployment)

🛠️ Installation

  1. Clone the repository:
git clone https://github.com/yourusername/ai-development-pipeline-mcp.git
cd ai-development-pipeline-mcp
  1. Install dependencies:
npm install
  1. Configure environment variables:
cp .env.example .env
# Edit .env with your API keys and configuration

🔧 Configuration

Create a .env file in the root directory with the following variables:

# Vercel Configuration
VERCEL_TOKEN=your_vercel_token_here
VERCEL_PROJECT_ID=your_project_id_here

# Airtable Configuration  
AIRTABLE_API_KEY=your_airtable_api_key_here
AIRTABLE_BASE_ID=your_base_id_here
AIRTABLE_TABLE_NAME=your_table_name_here

# Square Configuration
SQUARE_APPLICATION_ID=your_square_app_id_here
SQUARE_ACCESS_TOKEN=your_square_access_token_here

# Analytics Configuration
ANALYTICS_SECRET=your_analytics_secret_here
NEXT_PUBLIC_APP_URL=https://your-app-url.vercel.app

🖥️ Local MCP Server Setup

For Windows (PowerShell):

.\start-mcp.ps1

For Unix/Linux/macOS (Bash):

chmod +x start-mcp.sh
./start-mcp.sh

Manual Start:

npx ts-node local-mcp-server.ts

🔗 Claude Desktop Integration

  1. Start the local MCP server using one of the methods above
  2. Configure Claude Desktop by adding the following to your Claude Desktop configuration:
{
  "mcpServers": {
    "ai-development-pipeline": {
      "command": "npx",
      "args": ["ts-node", "/path/to/your/project/local-mcp-server.ts"],
      "env": {}
    }
  }
}
  1. Restart Claude Desktop to load the MCP server

☁️ Cloud Deployment (Vercel)

Automatic Deployment (Recommended)

  1. Connect to GitHub:

    • Go to Vercel Dashboard
    • Click "New Project" and import your GitHub repository
    • Vercel will automatically detect the configuration
  2. Manual Deployment:

npm install -g vercel
vercel deploy --prod

Build Configuration

The project includes a vercel.json configuration that handles:

  • TypeScript compilation
  • API route setup
  • CORS headers
  • Output directory configuration

Environment Variables

Configure these in your Vercel dashboard:

  • AIRTABLE_API_KEY
  • AIRTABLE_BASE_ID
  • AIRTABLE_TABLE_NAME
  • SQUARE_ACCESS_TOKEN
  • SQUARE_APPLICATION_ID
  • NEXTAUTH_SECRET
  • MCP_API_KEY
  • All other variables from .env.example

Claude Integration

Add to Claude as an HTTP MCP server:

  • URL: https://your-app.vercel.app/api/mcp
  • Method: POST
  • Headers: Content-Type: application/json

🛠️ Available MCP Tools

The server provides 7 powerful tools for AI-driven development:

  1. read_project_file - Read files from the workspace
  2. write_project_file - Write/update files in the workspace
  3. run_shell_command - Execute shell commands (npm, git, etc.)
  4. check_file_exists - Check if files exist
  5. list_directory_files - List directory contents
  6. run_augment_prompt - Send prompts to Augment coding agent
  7. run_project_tests - Execute project tests

📁 Project Structure

ai-development-pipeline-mcp/
├── app/
│   └── api/
│       └── mcp/
│           └── route.ts          # Cloud MCP endpoint
├── src/
│   └── hello.ts                  # Example TypeScript module
├── local-mcp-server.ts           # Local MCP server implementation
├── start-mcp.sh                  # Unix startup script
├── start-mcp.ps1                 # Windows startup script
├── package.json                  # Dependencies and scripts
├── tsconfig.json                 # TypeScript configuration
├── .env.example                  # Environment template
└── README.md                     # This file

🧪 Testing

Run the TypeScript compiler to check for errors:

npx tsc --noEmit

Test the local MCP server:

npx ts-node local-mcp-server.ts

🔒 Security Considerations

  • Never commit .env files - They contain sensitive API keys
  • Use environment variables for all secrets in production
  • Review API permissions before deploying to production
  • Enable proper authentication for cloud deployments

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Troubleshooting

Common Issues:

"Module not found" errors:

  • Ensure all dependencies are installed: npm install
  • Check TypeScript configuration in tsconfig.json

MCP server won't start:

  • Verify Node.js version (18+ required)
  • Check that ts-node is available: npx ts-node --version

Claude Desktop integration issues:

  • Ensure the MCP server is running before starting Claude
  • Check the file path in Claude Desktop configuration
  • Restart Claude Desktop after configuration changes

Getting Help:

🔗 Related Projects

📊 Project Status

Ready for Production

  • Local MCP server fully functional
  • Cloud deployment configured
  • All 7 MCP tools tested and validated
  • Cross-platform startup scripts included
  • Comprehensive documentation provided

Built with ❤️ for the AI development community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选