AI-Driven Remediation Testing

AI-Driven Remediation Testing

Orchestrates end-to-end testing of AI-powered incident remediation workflows through declarative YAML scenarios, fault injection, AI response evaluation, and automated command execution with comprehensive reporting.

Category
访问服务器

README

MCP Server - AI-Driven Remediation Testing

A production-ready Model Context Protocol (MCP) server for orchestrating AI-driven remediation test scenarios with gRPC, WebSocket, and HTTP integrations.

Overview

MCP Server provides end-to-end orchestration for testing AI-powered incident remediation workflows. It reads declarative YAML scenarios, injects faults, interacts with remediation APIs, evaluates AI responses, executes remediation commands, and produces comprehensive test reports.

Features

  • Declarative Scenarios: Define test scenarios in YAML with variable substitution
  • FSM-Based Orchestration: 13-state finite state machine for reliable execution
  • Fault Injection: Integrate with chaos engineering tools (Chaos Mesh, Litmus, etc.)
  • AI Evaluation: Score AI responses using regex, JSON Schema, and semantic similarity
  • Secure Execution: Sandboxed command execution with deny patterns
  • Remediation API Integration: Full HTTP/WebSocket client for workflow APIs
  • Comprehensive Logging: DEBUG+ file logs, INFO+ console, artifact management
  • Production-Ready: Type-safe Python 3.11+ with pydantic validation

Architecture

┌─────────────────────────────────────────────────────────────┐
│                     MCP Server (gRPC)                        │
├─────────────────────────────────────────────────────────────┤
│  ScenarioService │ FaultService │ ExecutorService │ EvalService│
└─────────────────────────────────────────────────────────────┘
         │                    │                    │
         ▼                    ▼                    ▼
┌──────────────────┐  ┌──────────────┐  ┌──────────────────┐
│ Orchestration    │  │ Fault        │  │ Command          │
│ Engine (FSM)     │  │ Injection    │  │ Executor         │
└──────────────────┘  └──────────────┘  └──────────────────┘
         │
         ▼
┌─────────────────────────────────────────────────────────────┐
│              Remediation Workflow API Client                 │
│         (HTTP + WebSocket, InitiateEnsemble, Resume)        │
└─────────────────────────────────────────────────────────────┘

Installation

# Install dependencies
pip install -r requirements.txt

# Generate gRPC code (optional, using simplified implementation for MVP)
# python -m grpc_tools.protoc -I proto --python_out=. --grpc_python_out=. proto/*.proto

Configuration

Configuration can be provided via config.yaml or environment variables:

# config.yaml
log_dir: "./log"
session_timeout_sec: 300

ws:
  ping_interval: 300
  ping_timeout: 300

grpc:
  host: "localhost"
  port: 50051
  timeout: 300

http:
  base_url: "http://localhost:8901"
  ws_url: "ws://localhost:8765/chatsocket"
  token_url: "https://app.lab0.signalfx.com/v2/jwt/token"

Environment variables (override config.yaml):

export CONFIG_PATH=./config.yaml
export MCP_LOG_DIR=./log
export MCP_GRPC__HOST=localhost
export MCP_GRPC__PORT=50051
export MCP_HTTP__BASE_URL=http://localhost:8901

Scenario Definition

Scenarios are defined in YAML with the following structure:

meta:
  id: scenario-001
  title: "Test Scenario"
  owner: "team-name"

defaults:
  model: "gpt-4"
  timeout: 300

bindings:
  namespace: "production"
  service: "api-gateway"

fault:
  type: "pod_kill"
  params:
    namespace: "${namespace}"

stabilize:
  wait_for:
    timeout: 120

assistant_rca:
  system: "You are an SRE expert."
  user: "Analyze the incident."
  expect:
    references: ["pod", "crash"]
    metrics: ["cpu", "memory"]
    guards:
      - type: "regex"
        pattern: "(?i)root cause"

assistant_remedy:
  system: "Provide remediation."
  user: "What commands should we run?"
  expect:
    references: ["kubectl"]

execute_remedy:
  sandbox:
    service_account: "sre-bot"
    namespace: "${namespace}"
    policies:
      deny_patterns:
        - ".*rm -rf.*"
  commands:
    - name: "Restart pods"
      cmd: "kubectl"
      args: ["rollout", "restart", "deployment/${service}"]

verify:
  signalflow:
    - program: "data('cpu.utilization').mean().publish()"
      assert_rules: ["value < 70"]

cleanup:
  always:
    - name: "Reset state"
      cmd: "kubectl"
      args: ["delete", "pod", "-l", "app=${service}"]

report:
  formats: ["json"]

FSM States

The orchestration engine follows this state machine:

  1. INIT: Initialize scenario, resolve bindings
  2. PRECHECK: Run pre-execution checks (SignalFlow)
  3. FAULT_INJECT: Inject fault using FaultService
  4. STABILIZE: Wait for system stabilization
  5. ASSISTANT_RCA: Get RCA from remediation API
  6. EVAL_RCA: Evaluate RCA response
  7. ASSISTANT_REMEDY: Get remediation commands
  8. EVAL_REMEDY: Evaluate remedy response
  9. EXECUTE_REMEDY: Execute commands
  10. VERIFY: Verify system state
  11. PASS: Scenario passed
  12. FAIL: Scenario failed
  13. CLEANUP: Clean up resources

Usage

Start Server

python -m mcp_server.server

Run Scenario (Programmatic)

import asyncio
from mcp_server.server import MCPServer
from mcp_server.config import get_settings

async def main():
    settings = get_settings()
    server = MCPServer(settings)

    # Run scenario
    result = await server.scenario_service.run_scenario(
        scenario_yaml=open("scenarios/example_scenario.yaml").read(),
        bindings={"namespace": "staging"}
    )

    print(f"Run ID: {result['run_id']}")
    print(f"Status: {result['status']}")

asyncio.run(main())

Check Results

Results are stored in log/runs/{run_id}/:

  • scenario.yaml: Original scenario
  • transcript.json: RCA/remedy responses
  • report.json: Final test report
  • cmd_*.txt: Command outputs

Services

FaultService

Injects and cleans up faults. Stub implementation provided; integrate with:

  • Chaos Mesh (Kubernetes)
  • Litmus (Kubernetes)
  • Gremlin (Cloud)

ExecutorService

Executes commands with sandboxing:

  • Local execution via asyncio.subprocess
  • Deny pattern enforcement
  • Output capture and artifact storage

EvalService

Evaluates AI responses:

  • Regex guards: Pattern matching
  • JSON Schema: Structure validation
  • Semantic similarity: Token-based Jaccard

RemediationClient

HTTP client for remediation workflow API:

  • initiate_remediation(): Start new workflow
  • resume_remediation(): Resume with input
  • JSON pointer resolution for graph navigation

API Reference

ScenarioService

service ScenarioService {
  rpc RunScenario(RunScenarioRequest) returns (RunScenarioResponse);
  rpc ListScenarios(Empty) returns (ListScenariosResponse);
  rpc GetScenario(GetScenarioRequest) returns (GetScenarioResponse);
  rpc StreamEvents(StreamEventsRequest) returns (stream ScenarioEvent);
}

Remediation API

InitiateEnsemble:

{
  "apiMethod": "InitiateEnsemble",
  "apiVersion": "1",
  "ensembleName": "REMEDIATION",
  "payload": {
    "incidentId": "inc-123",
    "rcaAnalysis": {
      "title": "Pod Crash",
      "summary": "API gateway pod crashed",
      "nextSteps": "Awaiting analysis"
    }
  }
}

ResumeEnsemble:

{
  "apiMethod": "ResumeEnsemble",
  "apiVersion": "1",
  "payload": {
    "messageType": "node_input",
    "stateIdentifier": {
      "threadId": "thread-123",
      "interruptId": "int-456"
    },
    "nodeId": "node-789",
    "inputProperties": {
      "input": "User input text"
    }
  }
}

Logging

  • Console: INFO+ (concise)
  • File: DEBUG+ at log/mcp_server.log (rotating, 10MB, 5 backups)
  • Artifacts: Per-run in log/runs/{run_id}/

Development

Project Structure

Remidiation-MCP/
├── config.yaml              # Configuration
├── requirements.txt         # Dependencies
├── proto/                   # gRPC definitions
│   ├── common.proto
│   ├── scenario_service.proto
│   ├── fault_service.proto
│   ├── executor_service.proto
│   └── eval_service.proto
├── mcp_server/
│   ├── __init__.py
│   ├── config.py            # Settings
│   ├── logging_config.py    # Logging
│   ├── server.py            # gRPC server
│   ├── models/              # Pydantic models
│   │   └── scenario.py
│   ├── services/            # Service implementations
│   │   ├── fault_service.py
│   │   ├── executor_service.py
│   │   └── eval_service.py
│   ├── clients/             # API clients
│   │   └── remediation_client.py
│   ├── orchestration/       # Orchestration engine
│   │   ├── fsm.py
│   │   └── engine.py
│   └── utils/               # Utilities
│       ├── variables.py
│       └── artifacts.py
├── scenarios/               # Test scenarios
│   └── example_scenario.yaml
└── log/                     # Logs and artifacts

Testing

# Run example scenario
python -m mcp_server.server

# In another terminal, verify logs
tail -f log/mcp_server.log

# Check results
ls -la log/runs/
cat log/runs/run-*/report.json

Production Deployment

Docker

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .

CMD ["python", "-m", "mcp_server.server"]

Kubernetes

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mcp-server
spec:
  replicas: 1
  template:
    spec:
      containers:
      - name: mcp-server
        image: mcp-server:latest
        ports:
        - containerPort: 50051
        env:
        - name: MCP_GRPC__HOST
          value: "0.0.0.0"
        - name: MCP_HTTP__BASE_URL
          value: "http://remediation-api:8901"

Contributing

  1. Follow PEP 8 style guidelines
  2. Add type hints to all functions
  3. Write docstrings for public APIs
  4. Update tests for new features

License

MIT License - See LICENSE file for details

Support

For issues and questions:

  • GitHub Issues: https://github.com/your-org/mcp-server/issues
  • Documentation: https://docs.your-org.com/mcp-server

Roadmap

  • [ ] Full gRPC code generation from .proto files
  • [ ] WebSocket streaming for real-time events
  • [ ] Chaos Mesh integration
  • [ ] Prometheus metrics export
  • [ ] OpenTelemetry tracing
  • [ ] Multi-scenario parallel execution
  • [ ] Scenario templates and library

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选