AI Memory MCP Server

AI Memory MCP Server

A cross-platform MCP server providing persistent storage for AI assistants to store, retrieve, and manage memories across conversations. It features keyword and tag-based search capabilities using a local JSON file for data persistence.

Category
访问服务器

README

AI Memory MCP Server

A cross-platform Model Context Protocol (MCP) server that provides persistent memory storage for AI assistants. This server allows AI models to store, retrieve, and manage memories across conversations.

Features

  • Persistent Storage: Memories are stored in a JSON file and survive server restarts
  • Rich Memory Management: Store memories with content, tags, and custom metadata
  • Powerful Search: Search memories by keywords or filter by tags
  • Cross-Platform: Works on Windows, macOS, and Linux
  • Easy Integration: Compatible with any MCP client (Claude Desktop, etc.)

Installation

Prerequisites

  • Node.js 18.0.0 or higher

Setup

  1. Clone or download this repository
  2. Install dependencies:
npm install

Usage

Running the Server

npm start

For development with auto-reload:

npm run dev

Configuration

Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

Linux: ~/.config/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "ai-memory": {
      "command": "node",
      "args": ["/absolute/path/to/mcp_server/index.js"]
    }
  }
}

Other MCP Clients

Use the stdio transport and point to the index.js file:

node /path/to/mcp_server/index.js

Available Tools

1. store_memory

Store a new memory or piece of knowledge.

Parameters:

  • content (required): The content to remember
  • tags (optional): Array of tags to categorize the memory
  • metadata (optional): Additional metadata as key-value pairs

Example:

{
  "content": "User prefers dark mode UI",
  "tags": ["preferences", "ui"],
  "metadata": {
    "priority": "high"
  }
}

2. search_memories

Search through stored memories using keywords or tags.

Parameters:

  • query (optional): Search query (searches in content)
  • tags (optional): Filter by specific tags
  • limit (optional): Maximum number of results (default: 10)

Example:

{
  "query": "dark mode",
  "tags": ["preferences"],
  "limit": 5
}

3. list_memories

List all stored memories with optional filtering.

Parameters:

  • tags (optional): Filter by specific tags
  • limit (optional): Maximum number of results (default: 50)

4. delete_memory

Delete a specific memory by its ID.

Parameters:

  • id (required): The ID of the memory to delete

5. clear_memories

Clear all stored memories. Use with caution!

Parameters:

  • confirm (required): Must be set to true to confirm deletion

6. get_memory_stats

Get statistics about stored memories (total count, tags, etc.).

Returns: Statistics including total count, tag counts, and timestamps.

Available Resources

memory://all

Complete list of all stored memories in JSON format.

memory://stats

Statistics about stored memories including counts and tag distribution.

Data Storage

Memories are stored in memories.json in the server directory. Each memory has:

  • id: Unique identifier
  • content: The memory content
  • tags: Array of tags
  • metadata: Custom metadata object
  • timestamp: ISO 8601 timestamp of when the memory was created

Example Use Cases

  1. User Preferences: Store user preferences that persist across conversations
  2. Project Context: Remember project details, architecture decisions, and requirements
  3. Learning: Store facts and knowledge the AI should remember
  4. Task Tracking: Keep track of ongoing tasks and their status
  5. Conversation History: Store important points from previous conversations

Security Notes

  • The memory file is stored locally on the machine running the server
  • No data is sent to external services
  • Ensure proper file permissions on the memories.json file
  • Back up the memories.json file regularly if you store important information

Troubleshooting

Server won't start

  • Ensure Node.js 18+ is installed: node --version
  • Check that dependencies are installed: npm install
  • Verify file permissions on the server directory

Memories not persisting

  • Check write permissions on the server directory
  • Ensure the server process isn't being killed before writes complete
  • Check for errors in the console output

Can't connect from Claude Desktop

  • Verify the path in the configuration is absolute, not relative
  • Check that the configuration JSON is valid
  • Restart Claude Desktop after changing the configuration
  • Check Claude Desktop logs for connection errors

Platform-Specific Notes

Windows

  • Use forward slashes or escaped backslashes in the config path
  • Example: C:/Users/YourName/mcp_server/index.js or C:\\Users\\YourName\\mcp_server\\index.js

macOS/Linux

  • Ensure the index.js file has execute permissions: chmod +x index.js
  • Use absolute paths starting with / or ~

License

MIT

Contributing

Contributions are welcome! Please feel free to submit issues or pull requests.

Support

For issues and questions, please open an issue on the GitHub repository.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选