AI Naming Standard MCP Server
Enables automatic generation and validation of standardized file names using AI-driven conventions for microservices architecture. Supports multi-language naming with structured components like microservice, layer, domain, and action identifiers.
README
🤖 AI Naming Standard MCP Server
Zero-Folderization: A revolutionary naming convention that enables AI-human collaboration by encoding complete context into filenames, eliminating folder dependencies.
🎯 The Philosophy of Zero-Folderization
This naming convention is an operational pact between non-developers and AI, designed to enable AI to develop and operate autonomously according to a shared standard.
🧠 Core Concept
Eliminate folders and encode hierarchy directly into filenames — a structure language AI can read.
❌ frontend/user/login/handler.js
✅ FE_User-Login_R_Handler_PROD.js
💡 Why Zero-Folderization?
Based on the principle of Zero-Folderization, AI can fully understand a file's:
- Location - Where it belongs in the architecture
- Role - What it does in the system
- Operation - CRUD operation type
- Dependencies - Related components
- Environment - Dev, Test, Staging, or Production
All of this without relying on folders — purely through the filename itself.
🔄 Paradigm Shift
| Aspect | Traditional (Human-Centric) | Zero-Folderization (AI-Based) |
|---|---|---|
| Structure | Folder navigation | Filename parsing |
| Management | Folder-based | File-based |
| Automation | Path-dependent | Pattern-based |
| Knowledge | Person-dependent | Self-documenting |
| Collaboration | Human-only | Shared AI+Human syntax |
🎯 Strategic Value
- AI-Human Communication: Non-developers can issue precise instructions to AI using natural language feature names
- Knowledge Persistence: Filenames serve as both documentation and architecture
- Risk Mitigation: Eliminates knowledge loss from developer turnover
- Operational Efficiency: +70% maintenance speed, -80% error rate
- Instant Understanding: New maintainers grasp the system within one day
🌟 Real-World Example
A non-developer (planner, operator, or marketer) can say:
"AI, please modify 03_FE_Customer-Register_C_NewUser_PROD.js
Add an email validation step after the name input."
AI immediately understands:
- Frontend (FE) file
- Customer domain
- Create (C) operation
- Production environment
And can locate and update the correct file without human intervention.
🚀 What is AI Naming Standard MCP?
The AI Naming Standard MCP Server implements this Zero-Folderization philosophy as a Model Context Protocol server, providing tools to:
- Automatically generate standardized file names
- Validate existing file names against conventions
- Bridge the communication gap between developers and non-developers
- Enable AI to understand and operate on your codebase autonomously
🌐 Multi-Language Support
- 🇺🇸 English (Default)
- 🇰🇷 한국어 (Korean)
- 🇯🇵 日本語 (Japanese)
⚡ Quick Start
Install via NPM
npm install -g ai-naming-standard-mcp
Configure Claude Desktop
Add to your Claude Desktop configuration:
Windows: %APPDATA%\Claude\claude_desktop_config.json
Mac/Linux: ~/.config/claude/claude_desktop_config.json
{
"mcpServers": {
"ai-naming-standard": {
"command": "npx",
"args": ["ai-naming-standard-mcp"]
}
}
}
Restart Claude Desktop
📖 Core Principles
1. Flat-First & Folder-Zero
Eliminate folders; embed hierarchy within filenames.
2. Machine-Readable
Use _, -, and [ ] for AI-friendly parsing.
3. Human-Assistive
Use natural-language feature names so non-developers can understand.
4. Deterministic Flow
[index] = execution order, making data flow explicit.
5. Observable by Name
Security level, version, and environment are explicit in names.
6. Non-breaking Evolution
Decimal indices and _Deprecated tags ensure safe iteration.
🛠️ Available Tools
Core Tools
- generateFileName - Generate standardized file names with AI-readable structure
- validateFileName - Validate existing file names against Zero-Folderization principles
- explainFileName - Decode and explain file name components
- getLayerCodes - Get architecture layer codes (Frontend, Backend, Data, Infra)
- getActionCodes - Get CRUD operation codes
- getProjectTemplate - Generate complete project templates
- batchGenerateFileNames - Generate multiple files at once
- suggestCorrection - Get correction suggestions for invalid names
📐 Naming Convention Structure
Pattern
[Index]_[Layer]_[Domain]-[Feature]_[Action]_[Detail]_[Env].[ext]
Examples
// Frontend user login handler - Production
03_FE_User-Login_R_Handler_PROD.js
// Backend payment validation service - Development
02.1_BE_Payment-Card_V_Service_DEV.py
// Database user table creation - Common
01_DB_User-Account_C_Table_COMMON.sql
// API gateway routing configuration - Staging
04_INFRA_Gateway-Routes_U_Config_STG.yml
Component Breakdown
| Component | Description | Examples |
|---|---|---|
| Index | Execution order | 01, 02.1, 03 |
| Layer | Architecture layer | FE, BE, DB, API, INFRA |
| Domain | Business domain | User, Payment, Order |
| Feature | Specific feature | Login, Validation, Export |
| Action | CRUD operation | Create, Read, Update, Delete |
| Detail | File purpose | Handler, Service, Config |
| Env | Environment | DEV, STG, PROD, COMMON |
🔄 Benefits Over Traditional Approaches
Traditional Folder Structure Problems
- Human-Centered: Only humans understand folder structures
- AI Inefficiency: Tree navigation slows AI search and modification
- Context Loss: Knowledge disappears when developers leave
- Communication Barrier: Non-developers cannot issue precise instructions
Zero-Folderization Solutions
- AI-Readable: Patterns and syntax AI can instantly parse
- Self-Documenting: Filenames contain complete context
- Knowledge Persistent: Information survives personnel changes
- Universal Language: Both AI and humans can understand
📊 Organizational ROI
- 70% faster maintenance speed
- 80% reduction in error rate
- 1 day onboarding for new maintainers (vs weeks)
- 100% knowledge retention despite turnover
- Direct non-developer to AI communication
🌍 Use Cases
For Developers
- Instant file purpose identification
- Automated dependency tracking
- Clear execution flow visualization
- Environment-specific deployments
For Non-Developers
- Issue clear instructions to AI
- Understand system architecture
- Track feature implementations
- Manage projects without technical knowledge
For Organizations
- Reduce handover risks
- Maintain continuity despite turnover
- Enable cross-functional collaboration
- Accelerate development cycles
🔧 Advanced Features
Batch Operations
Generate multiple files for entire microservices:
// Generate 10 files for user and payment services
batchGenerateFileNames({
microservices: ['user', 'payment'],
projectType: 'ecommerce',
count: 10
})
Project Templates
Get complete file structures for different project types:
// Get enterprise e-commerce template
getProjectTemplate({
projectType: 'ecommerce',
scale: 'enterprise'
})
Validation & Correction
Validate and get suggestions for existing files:
// Validate a filename
validateFileName('frontend/user/login.js')
// Returns: Invalid - suggests: "01_FE_User-Login_R_Handler_DEV.js"
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
📄 License
MIT License - see LICENSE file for details.
🙏 Acknowledgments
This project implements the Zero-Folderization philosophy, creating a shared language for AI-human collaboration in software development.
📞 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- NPM: npmjs.com/package/ai-naming-standard-mcp
Zero-Folderization represents a decisive shift from human-centered development to AI-centered operation — and at its core, it's an agreement between AI and non-developers.
"Folders are removed; context is restored through filenames. AI reads them as grammar. Humans use them as a language of instruction."
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。