AI Personal Hub

AI Personal Hub

Unified personal assistant MCP server that connects local files, GitHub repositories, YouTube playlists, Gmail, and Steam data. Enables querying and managing personal data across multiple platforms through natural language via LM Studio integration.

Category
访问服务器

README

AI Personal Hub

Unified personal assistant that connects Local Files, GitHub, YouTube, Gmail, Steam, and Summarization through Model Context Protocol (MCP), with a clean Flask UI and LM Studio integration.

<img width="1318" height="859" alt="image" src="https://github.com/user-attachments/assets/cd375f7f-0e8c-4121-b542-4d8ccec2f5f9" /> <img width="1663" height="852" alt="image" src="https://github.com/user-attachments/assets/c5256413-a17e-4e44-9cb6-33b51bb2d717" />

Features

  • Local notes: list and open .txt files from notes/
  • GitHub: repos, commits, list files, fetch file content, issues
  • YouTube: Liked Videos (LL), Liked Songs (LM) via OAuth
  • Gmail: read last emails via OAuth
  • Steam: recent owned games and playtime
  • Summarizer: prompt exposed as an MCP tool
  • Modern chat-style UI with quick actions and linkified results

Architecture

  • Flask serves the UI and a simple /ask endpoint
  • LM Studio runs a local OpenAI-compatible server for LLM responses
  • MCP server (mcp_server/server.py) exposes tools that LM Studio can call
Browser ↔ Flask UI ↔ LM Studio (LLM) ↔ MCP Tools (python -m mcp_server.server)

Setup

  1. Python env
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install -r requirements.txt
  1. LM Studio (recommended defaults)
  • Start LM Studio local server (OpenAI-compatible) on http://localhost:1234
  • Set environment variables (PowerShell):
setx LM_STUDIO_BASE_URL http://localhost:1234
setx LM_STUDIO_API_KEY lm-studio
setx LM_STUDIO_MODEL your-model-name
  1. MCP server registration in LM Studio

Edit LM Studio mcp.json and add:

{
  "mcpServers": {
    "personal-hub-server": {
      "command": "D:\\AI_MCP\\ai-personal-hub\\.venv\\Scripts\\python.exe",
      "args": ["-m", "mcp_server.server"],
      "cwd": "D:\\AI_MCP\\ai-personal-hub"
    }
  }
}

Then start the server in LM Studio Tools (MCP), or run manually:

python -m mcp_server.server
  1. Service credentials
  • GitHub: set GITHUB_TOKEN (PAT, repo read scope recommended)
  • Steam: set STEAM_API_KEY and STEAM_ID
  • Notes: create notes/ with .txt files

YouTube OAuth (token.json)

  • In Google Cloud: enable "YouTube Data API v3"
  • Create OAuth client (Desktop app) → download client_secret.json to project root
  • Generate token.json (one-time):
python -c "from google_auth_oauthlib.flow import InstalledAppFlow; import json; flow=InstalledAppFlow.from_client_secrets_file('client_secret.json',['https://www.googleapis.com/auth/youtube.readonly']); creds=flow.run_local_server(port=0); open('token.json','w',encoding='utf-8').write(creds.to_json())"

Gmail OAuth (token.json)

  • Similar flow; ensure scope https://www.googleapis.com/auth/gmail.readonly

Run

Flask UI:

python app.py

Open http://127.0.0.1:5000/

MCP server (separate terminal):

python -m mcp_server.server

Available MCP tools

  • Files: list_local_files, fetch_local_file
  • GitHub: github_repos, github_commits, github_list_files, github_file_content, github_issues, github_issue
  • YouTube: yt_liked_videos, ytm_liked_songs, yt_playlist
  • Gmail: read_emails
  • Steam: steam_games
  • Summarize: summarize prompt

Example prompts

  • “List my local notes.”
  • “Open a.txt.”
  • “List repos for Harsh-1807.”
  • “List files in Harsh-1807/weather.”
  • “Open README.md from Harsh-1807/weather.”
  • “Show open issues for Harsh-1807/weather.”
  • “List 5 of my liked YouTube videos.”
  • “List 5 of my liked songs on YouTube Music.”
  • “Summarize my last 5 emails.”
  • “Which Steam games do I play most?”

Troubleshooting

  • LLM answers without calling tools: lower temperature; add a system prompt telling it to prefer MCP tools; ensure the tool server is running and registered in LM Studio.
  • YouTube LM liked songs not returning results: some accounts do not expose LM over the API; try yt_liked_videos (LL) or yt_playlist("LL").
  • Permission errors: re-create token.json for the correct Google account; verify scopes.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选