AI-Powered Jira MCP Server
Enables natural language interactions with Jira for creating issues, managing boards, searching tickets, and handling project operations. Supports conversational AI workflows with smart field detection and multi-turn conversations.
README
AI-Powered Jira MCP Server
A Model Context Protocol (MCP) server for Jira integration powered by Claude AI. This server enables natural language interactions with Jira, allowing you to create issues, manage boards, search tickets, and more using conversational AI.
Features
Core Capabilities
- Natural Language Processing: Interact with Jira using plain English
- Issue Management: Create, update, search, and transition issues
- Board Management: Create and manage Scrum/Kanban boards
- Comment System: Add comments to issues
- User Management: Assign users and manage permissions
- Image Analysis: Upload images and get AI-powered descriptions
- Smart Field Detection: AI asks for missing required fields
- Conversation Context: Multi-turn conversations with session management
Supported Operations
-
Issue Operations
- Create issues with detailed descriptions
- Update existing issues
- Search issues (natural language or JQL)
- Transition issues through workflow
- Add comments
- Attach files/images
-
Board Operations
- Create new boards (Scrum/Kanban)
- List all boards
- Get board details
-
Project Operations
- List all projects
- Get project details
- Get assignable users
Installation
Prerequisites
- Python 3.9+
- Jira account with API access
- Anthropic API key
Setup
- Clone the repository
git clone <your-repo>
cd mcp_server
- Install dependencies
pip install -r requirements.txt
- Configure environment variables
cp .env.example .env
Edit .env with your credentials:
JIRA_URL=https://your-domain.atlassian.net
JIRA_EMAIL=your-email@example.com
JIRA_API_TOKEN=your-jira-api-token
ANTHROPIC_API_KEY=your-anthropic-api-key
-
Get Jira API Token
- Go to https://id.atlassian.com/manage-profile/security/api-tokens
- Click "Create API token"
- Copy the token to your
.envfile
-
Get Anthropic API Key
- Go to https://console.anthropic.com/
- Create an API key
- Copy to your
.envfile
Usage
Start the Server
python server.py
The server will start on http://localhost:8000
API Documentation
Once running, visit:
- Swagger UI:
http://localhost:8000/docs - ReDoc:
http://localhost:8000/redoc
Example Requests
1. Natural Language Chat
curl -X POST http://localhost:8000/chat \
-H "Content-Type: application/json" \
-d '{
"message": "Create a bug issue about login failure on mobile app",
"session_id": "test-session-1"
}'
Response:
{
"session_id": "test-session-1",
"response": "I'd be happy to help create a bug issue. Which project should I create this in? Please provide the project key (e.g., PROJ, DEV, etc.)",
"tool_calls": [],
"success": true
}
2. Follow-up Message
curl -X POST http://localhost:8000/chat \
-H "Content-Type: application/json" \
-d '{
"message": "Create it in MOBILE project",
"session_id": "test-session-1"
}'
3. Create Issue Directly
curl -X POST http://localhost:8000/issues/create \
-H "Content-Type: application/json" \
-d '{
"project_key": "PROJ",
"summary": "Login button not working",
"description": "Users cannot click the login button on iOS devices",
"issue_type": "Bug",
"priority": "High"
}'
4. Upload Image
curl -X POST http://localhost:8000/upload \
-F "file=@screenshot.png"
Response includes AI analysis:
{
"file_id": "123e4567-e89b-12d3-a456-426614174000",
"filename": "screenshot.png",
"path": "./storage/uploads/123e4567-e89b-12d3-a456-426614174000.png",
"analysis": "The image shows a mobile login screen with a disabled login button...",
"success": true
}
5. Search Issues
curl -X POST http://localhost:8000/issues/search \
-H "Content-Type: application/json" \
-d '{
"query": "Find all high priority bugs assigned to me",
"max_results": 20
}'
6. Get Boards
curl -X GET http://localhost:8000/boards
7. Get Projects
curl -X GET http://localhost:8000/projects
Natural Language Examples
The AI can understand various ways of expressing commands:
Creating Issues
- "Create a bug issue about the login page crashing"
- "Add a new task for implementing dark mode"
- "I need to report a critical issue with payment processing"
- "Make a story for user authentication feature"
Searching
- "Show me all my open tasks"
- "Find bugs in the MOBILE project"
- "What issues are due this week?"
- "List all high priority items"
Updating
- "Change PROJ-123 status to In Progress"
- "Assign PROJ-456 to john.doe"
- "Update the description of PROJ-789"
- "Add a comment to PROJ-123 saying it's fixed"
Board Management
- "Create a new scrum board for the API project"
- "Show me all available boards"
- "List projects I have access to"
Architecture
┌─────────────┐
│ Client │
│ (UI/CLI) │
└──────┬──────┘
│
│ HTTP/REST
│
┌──────▼──────────────────────────────────┐
│ FastAPI Server │
│ ┌────────────────────────────────────┐ │
│ │ LLM Orchestrator (Claude) │ │
│ │ - Natural Language Processing │ │
│ │ - Tool Selection & Execution │ │
│ │ - Conversation Management │ │
│ └─────────┬──────────────────────────┘ │
│ │ │
│ ┌─────────▼──────────┐ │
│ │ MCP Tools │ │
│ │ - Tool Registry │ │
│ │ - Tool Execution │ │
│ └─────────┬──────────┘ │
│ │ │
│ ┌─────────▼──────────┐ │
│ │ Jira Client │ │
│ │ - API Wrapper │ │
│ │ - Authentication │ │
│ └─────────┬──────────┘ │
└────────────┼──────────────────────────────┘
│
│ Jira REST API
│
┌────────▼────────┐
│ Jira Cloud │
│ (Atlassian) │
└─────────────────┘
Project Structure
/mcp_server
/tools # MCP tool definitions and handlers
/schemas # Pydantic models for API requests/responses
/jira_client # Jira API client wrapper
/llm_orchestrator # Claude AI integration and tool orchestration
/storage
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。