AI Studio MCP Server

AI Studio MCP Server

A Model Context Protocol server that connects to Google AI Studio/Gemini API, enabling content generation with support for various file types, conversation history, and system prompts.

Category
访问服务器

README

AI Studio MCP Server

A Model Context Protocol (MCP) server that integrates with Google AI Studio / Gemini API, providing content generation capabilities with support for files, conversation history, and system prompts.

Installation and Usage

Prerequisites

  • Node.js 20.0.0 or higher
  • Google AI Studio API key

Using npx (Recommended)

GEMINI_API_KEY=your_api_key npx -y aistudio-mcp-server

Local Installation

npm install -g aistudio-mcp-server
GEMINI_API_KEY=your_api_key aistudio-mcp-server

Configuration

Set your Google AI Studio API key as an environment variable:

export GEMINI_API_KEY=your_api_key_here

Optional Configuration

  • GEMINI_MODEL: Gemini model to use (default: gemini-2.5-flash)
  • GEMINI_TIMEOUT: Request timeout in milliseconds (default: 300000 = 5 minutes)
  • GEMINI_MAX_OUTPUT_TOKENS: Maximum output tokens (default: 8192)
  • GEMINI_MAX_FILES: Maximum number of files per request (default: 10)
  • GEMINI_MAX_TOTAL_FILE_SIZE: Maximum total file size in MB (default: 50)
  • GEMINI_TEMPERATURE: Temperature for generation (0-2, default: 0.2)

Example:

export GEMINI_API_KEY=your_api_key_here
export GEMINI_MODEL=gemini-2.5-flash
export GEMINI_TIMEOUT=600000  # 10 minutes
export GEMINI_MAX_OUTPUT_TOKENS=16384  # More output tokens
export GEMINI_MAX_FILES=5  # Limit to 5 files per request
export GEMINI_MAX_TOTAL_FILE_SIZE=100  # 100MB limit
export GEMINI_TEMPERATURE=0.7  # More creative responses

Available Tools

generate_content

Generates content using Gemini with comprehensive support for files, conversation history, and system prompts. Supports various file types including images, PDFs, Office documents, and text files.

Parameters:

  • user_prompt (string, required): User prompt for generation
  • system_prompt (string, optional): System prompt to guide AI behavior
  • files (array, optional): Array of files to include in generation
    • Each file object must have either path or content
    • path (string): Path to file
    • content (string): Base64 encoded file content
    • type (string, optional): MIME type (auto-detected from file extension)
  • model (string, optional): Gemini model to use (default: gemini-2.5-flash)
  • temperature (number, optional): Temperature for generation (0-2, default: 0.2). Lower values produce more focused responses, higher values more creative ones

Supported file types (Gemini 2.5 models):

  • Images: JPG, JPEG, PNG, GIF, WebP, SVG, BMP, TIFF
  • Video: MP4, AVI, MOV, WEBM, FLV, MPG, WMV (up to 10 files per request)
  • Audio: MP3, WAV, AIFF, AAC, OGG, FLAC (up to 15MB per file)
  • Documents: PDF (treated as images, one page = one image)
  • Text: TXT, MD, JSON, XML, CSV, HTML

File limitations:

  • Maximum file size: 15MB per audio/video/document file
  • Maximum total request size: 20MB (2GB when using Cloud Storage)
  • Video files: Up to 10 per request
  • PDF files follow image pricing (one page = one image)

Basic example:

{
  "user_prompt": "Analyze this image and describe what you see",
  "files": [
    {
      "path": "/path/to/image.jpg"
    }
  ]
}

PDF to Markdown conversion:

{
  "user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure and formatting. Return only the Markdown content.",
  "files": [
    {
      "path": "/path/to/document.pdf"
    }
  ]
}

With system prompt:

{
  "system_prompt": "You are a helpful document analyst specialized in technical documentation",
  "user_prompt": "Please provide a detailed explanation of the authentication methods shown in this document",
  "files": [
    {"path": "/api-docs.pdf"}
  ]
}

Multiple files example:

{
  "user_prompt": "Compare these documents and images",
  "files": [
    {"path": "/document.pdf"},
    {"path": "/chart.png"},
    {"content": "base64encodedcontent", "type": "image/jpeg"}
  ]
}

Common Use Cases

PDF to Markdown Conversion

To convert PDF files to Markdown format, use the generate_content tool with an appropriate prompt:

{
  "user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure, headings, lists, and formatting. Include table of contents if the document has sections.",
  "files": [
    {
      "path": "/path/to/document.pdf"
    }
  ]
}

Image Analysis

Analyze images, charts, diagrams, or photos with detailed descriptions:

{
  "system_prompt": "You are an expert image analyst. Provide detailed, accurate descriptions of visual content.",
  "user_prompt": "Analyze this image and describe what you see. Include details about objects, people, text, colors, and composition.",
  "files": [
    {
      "path": "/path/to/image.jpg"
    }
  ]
}

For screenshots or technical diagrams:

{
  "user_prompt": "Describe this system architecture diagram. Explain the components and their relationships.",
  "files": [
    {
      "path": "/architecture-diagram.png"
    }
  ]
}

Audio Transcription

Generate transcripts from audio files:

{
  "system_prompt": "You are a professional transcription service. Provide accurate, well-formatted transcripts.",
  "user_prompt": "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs.",
  "files": [
    {
      "path": "/meeting-recording.mp3"
    }
  ]
}

For interview or meeting transcripts:

{
  "user_prompt": "Transcribe this interview and provide a summary of key points discussed.",
  "files": [
    {
      "path": "/interview.wav"
    }
  ]
}

MCP Client Configuration

Add this server to your MCP client configuration:

{
  "mcpServers": {
    "aistudio": {
      "command": "npx",
      "args": ["-y", "aistudio-mcp-server"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here",
        "GEMINI_MODEL": "gemini-2.5-flash",
        "GEMINI_TIMEOUT": "600000",
        "GEMINI_MAX_OUTPUT_TOKENS": "16384",
        "GEMINI_MAX_FILES": "10",
        "GEMINI_MAX_TOTAL_FILE_SIZE": "50",
        "GEMINI_TEMPERATURE": "0.2"
      }
    }
  }
}

Development

Setup

Make sure you have Node.js 20.0.0 or higher installed.

npm install
npm run build

Running locally

GEMINI_API_KEY=your_api_key npm run dev

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选