AI Workspace MCP Server
Provides a secure workspace for AI-driven file management and Python script execution designed to run on Vercel. It enables tools for full file operations and code execution within a sandboxed environment.
README
AI Workspace MCP Server
A Model Context Protocol (MCP) server that provides AI with a secure workspace for file management and Python script execution. Designed to run on Vercel as a serverless function.
Features
File Management Tools
- create_file - Create new files with content
- read_file - Read file contents
- update_file - Update existing files
- delete_file - Delete files
- list_files - List files and directories
- create_directory - Create new directories
Code Execution
- execute_python - Execute Python scripts with arguments (30-second timeout)
Setup on Vercel
1. Install Vercel CLI (Optional)
npm install -g vercel
2. Project Structure
Your project should look like this:
ai-workspace-mcp/
├── api/
│ └── mcp.py # Serverless function
├── vercel.json # Vercel configuration
├── requirements.txt # Python dependencies
└── README.md # This file
3. Deploy to Vercel
Option A: Deploy via Vercel Dashboard
- Go to vercel.com
- Click "Add New" → "Project"
- Import your Git repository (or upload files)
- Vercel will auto-detect Python and deploy
Option B: Deploy via CLI
# Login to Vercel
vercel login
# Deploy
vercel
# Deploy to production
vercel --prod
4. Get Your Deployment URL
After deployment, Vercel will give you a URL like:
https://your-project-name.vercel.app
API Endpoints
Once deployed, your server will have these endpoints:
GET /
Returns server information and status
curl https://your-project.vercel.app/
GET /health
Health check endpoint
curl https://your-project.vercel.app/health
GET /tools
List all available tools
curl https://your-project.vercel.app/tools
POST /execute
Execute a tool
curl -X POST https://your-project.vercel.app/execute \
-H "Content-Type: application/json" \
-d '{
"tool": "create_file",
"arguments": {
"filepath": "hello.py",
"content": "print(\"Hello World!\")"
}
}'
Using with AI Clients
Claude Desktop Configuration
Add this to your Claude Desktop config:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"ai-workspace": {
"command": "curl",
"args": [
"-X", "POST",
"https://your-project.vercel.app/execute",
"-H", "Content-Type: application/json",
"-d", "@-"
]
}
}
}
Using the API Directly
You can integrate this with any AI that supports HTTP tool calling:
import requests
# Create a file
response = requests.post(
"https://your-project.vercel.app/execute",
json={
"tool": "create_file",
"arguments": {
"filepath": "script.py",
"content": "print('Hello from AI!')"
}
}
)
print(response.json())
# Execute the file
response = requests.post(
"https://your-project.vercel.app/execute",
json={
"tool": "execute_python",
"arguments": {
"filepath": "script.py"
}
}
)
print(response.json())
Security Features
- Sandboxed Workspace: All file operations are restricted to
/tmp/workspace - Path Validation: Prevents directory traversal attacks
- Execution Timeout: Python scripts are limited to 30 seconds
- CORS Enabled: Allows cross-origin requests
- Serverless Isolation: Each request runs in an isolated environment
Tool Examples
Create and Execute a Python Script
# Create a file
curl -X POST https://your-project.vercel.app/execute \
-H "Content-Type: application/json" \
-d '{
"tool": "create_file",
"arguments": {
"filepath": "hello.py",
"content": "print(\"Hello from Vercel!\")"
}
}'
# Execute it
curl -X POST https://your-project.vercel.app/execute \
-H "Content-Type: application/json" \
-d '{
"tool": "execute_python",
"arguments": {
"filepath": "hello.py"
}
}'
List Files
curl -X POST https://your-project.vercel.app/execute \
-H "Content-Type: application/json" \
-d '{
"tool": "list_files",
"arguments": {}
}'
Create Directory Structure
curl -X POST https://your-project.vercel.app/execute \
-H "Content-Type: application/json" \
-d '{
"tool": "create_directory",
"arguments": {
"dirpath": "scripts"
}
}'
Response Format
All tool executions return JSON:
Success Response:
{
"success": true,
"message": "Successfully created file: hello.py\nSize: 26 bytes"
}
Error Response:
{
"success": false,
"error": "File not found: nonexistent.py"
}
Execute Python Response:
{
"success": true,
"exit_code": 0,
"stdout": "Hello from Vercel!\n",
"stderr": ""
}
Important Notes
Vercel Limitations
- Temporary Storage: Files in
/tmpare ephemeral and cleared between invocations - 10-second timeout: Vercel functions timeout after 10 seconds on free tier (25s on Pro)
- Cold Starts: First request may be slower due to cold start
- No Persistent State: Each function invocation starts fresh
For Persistent Storage
If you need persistent file storage, consider:
- Using Vercel KV, Postgres, or Blob storage
- Integrating with AWS S3, Google Cloud Storage, etc.
- Using a database to store file contents
Environment Variables (Optional)
You can set environment variables in Vercel Dashboard:
WORKSPACE_PATH- Custom workspace path (default:/tmp/workspace)EXECUTION_TIMEOUT- Python execution timeout in seconds (default: 30)
Local Development
Test locally before deploying:
# Install dependencies
pip install -r requirements.txt
# Run with Python's built-in server
cd api
python -m http.server 8000
# Or use Vercel CLI
vercel dev
Then test with:
curl http://localhost:8000/health
Troubleshooting
"Module not found" errors
Ensure requirements.txt is in the project root and contains all dependencies.
Timeout errors
- Reduce Python script complexity
- Upgrade to Vercel Pro for longer timeouts
- Use async operations where possible
File not persisting
Remember: /tmp storage is ephemeral on Vercel. Files won't persist between invocations.
Advanced Usage
Custom MCP Client
class VercelMCPClient:
def __init__(self, base_url):
self.base_url = base_url
def call_tool(self, tool_name, arguments):
response = requests.post(
f"{self.base_url}/execute",
json={"tool": tool_name, "arguments": arguments}
)
return response.json()
def list_tools(self):
response = requests.get(f"{self.base_url}/tools")
return response.json()
# Usage
client = VercelMCPClient("https://your-project.vercel.app")
result = client.call_tool("create_file", {
"filepath": "test.py",
"content": "print('test')"
})
Contributing
Feel free to extend this server with additional tools:
- Add tool definition to
get_tools() - Implement handler in
execute_tool() - Update documentation
License
MIT License - modify and use as needed.
Support
- Vercel Docs: vercel.com/docs
- MCP Protocol: modelcontextprotocol.io
- Issues: Open an issue or modify the code as needed
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。