
Aiven MCP Server
Provides access to Aiven's PostgreSQL, Kafka, ClickHouse, Valkey and OpenSearch services, enabling LLMs to build full stack solutions by interacting with the Aiven ecosystem.
README
Aiven MCP Server
A Model Context Protocol (MCP) server for Aiven.
This provides access to the Aiven for PostgreSQL, Kafka, ClickHouse, Valkey and OpenSearch services running in Aiven and the wider Aiven ecosystem of native connectors. Enabling LLMs to build full stack solutions for all use-cases.
Features
Tools
-
list_projects
- List all projects on your Aiven account.
-
list_services
- List all services in a specific Aiven project.
-
get_service_details
- Get the detail of your service in a specific Aiven project.
Configuration for Claude Desktop
-
Open the Claude Desktop configuration file located at:
- On macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- On Windows:
%APPDATA%/Claude/claude_desktop_config.json
- On macOS:
-
Add the following:
{
"mcpServers": {
"mcp-aiven": {
"command": "uv",
"args": [
"--directory",
"$REPOSITORY_DIRECTORY",
"run",
"--with-editable",
"$REPOSITORY_DIRECTORY",
"--python",
"3.13",
"mcp-aiven"
],
"env": {
"AIVEN_BASE_URL": "https://api.aiven.io",
"AIVEN_TOKEN": "$AIVEN_TOKEN"
}
}
}
}
Update the environment variables:
$REPOSITORY_DIRECTORY
to point to the folder cointaining the repositoryAIVEN_TOKEN
to the Aiven login token.
-
Locate the command entry for
uv
and replace it with the absolute path to theuv
executable. This ensures that the correct version ofuv
is used when starting the server. On a mac, you can find this path usingwhich uv
. -
Restart Claude Desktop to apply the changes.
Configuration for Cursor
-
Navigate to Cursor -> Settings -> Cursor Settings
-
Select "MCP Servers"
-
Add a new server with
- Name:
mcp-aiven
- Type:
command
- Command:
uv --directory $REPOSITORY_DIRECTORY run --with-editable $REPOSITORY_DIRECTORY --python 3.13 mcp-aiven
- Name:
Where $REPOSITORY_DIRECTORY
is the path to the repository. You might need to add the AIVEN_BASE_URL
, AIVEN_PROJECT_NAME
and AIVEN_TOKEN
as variables
Development
- Add the following variables to a
.env
file in the root of the repository.
AIVEN_BASE_URL=https://api.aiven.io
AIVEN_TOKEN=$AIVEN_TOKEN
-
Run
uv sync
to install the dependencies. To installuv
follow the instructions here. Then dosource .venv/bin/activate
. -
For easy testing, you can run
mcp dev mcp_aiven/mcp_server.py
to start the MCP server.
Environment Variables
The following environment variables are used to configure the Aiven connection:
Required Variables
AIVEN_BASE_URL
: The Aiven API urlAIVEN_TOKEN
: The authentication token
Developer Considerations for Model Context Protocols (MCPs) and AI Agents
This section outlines key developer responsibilities and security considerations when working with Model Context Protocols (MCPs) and AI Agents within this system. Self-Managed MCPs:
- Customer Responsibility: MCPs are executed within the user's environment, not hosted by Aiven. Therefore, users are solely responsible for their operational management, security, and compliance, adhering to the shared responsibility model. (https://aiven.io/responsibility-matrix)
- Deployment and Maintenance: Developers must handle all aspects of MCP deployment, updates, and maintenance.
AI Agent Security:
- Permission Control: Access and capabilities of AI Agents are strictly governed by the permissions granted to the API token used for their authentication. Developers must meticulously manage these permissions.
- Credential Handling: Be acutely aware that AI Agents may require access credentials (e.g., database connection strings, streaming service tokens) to perform actions on your behalf. Exercise extreme caution when providing such credentials to AI Agents.
- Risk Assessment: Adhere to your organization's security policies and conduct thorough risk assessments before granting AI Agents access to sensitive resources.
API Token Best Practices:
- Principle of Least Privilege: Always adhere to the principle of least privilege. API tokens should be scoped and restricted to the minimum permissions necessary for their intended function.
- Token Management: Implement robust token management practices, including regular rotation and secure storage.
Key Takeaways:
- Users retain full control and responsibility for MCP execution and security.
- AI Agent permissions are directly tied to API token permissions.
- Exercise extreme caution when providing credentials to AI Agents.
- Strictly adhere to the principle of least privilege when managing API tokens.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。