alertmanager-mcp-server
alertmanager-mcp-server
Tools
get_status
Get current status of an Alertmanager instance and its cluster
get_receivers
Get list of all receivers (name of notification integrations)
get_silences
Get list of all silences
post_silence
Post a new silence or update an existing one
get_silence
Get a silence by its ID
delete_silence
Delete a silence by its ID
get_alerts
Get a list of alerts
post_alerts
Create new alerts
get_alert_groups
Get a list of alert groups
README
<div align="center"> <h1>Prometheus Alertmanager MCP</h1> <p> <a href="https://github.com/ntk148v/alertmanager-mcp-server/blob/master/LICENSE"> <img alt="GitHub license" src="https://img.shields.io/github/license/ntk148v/alertmanager-mcp-server?style=for-the-badge"> </a> <a href="https://github.com/ntk148v/alertmanager-mcp-server/stargazers"> <img alt="GitHub stars" src="https://img.shields.io/github/stars/ntk148v/alertmanager-mcp-server?style=for-the-badge"> </a> </div>
Table of Contents
1. Introduction
Prometheus Alertmanager MCP is a Model Context Protocol (MCP) server for Prometheus Alertmanager. It enables AI assistants and tools to query and manage Alertmanager resources programmatically and securely.
2. Features
- [x] Query Alertmanager status, alerts, silences, receivers, and alert groups
- [x] Create, update, and delete silences
- [x] Create new alerts
- [x] Authentication support (Basic auth via environment variables)
- [x] Docker containerization support
3. Quickstart
3.1. Prerequisites
- Python 3.12+
- uv (for fast dependency management).
- Docker (optional, for containerized deployment).
- Ensure your Prometheus Alertmanager server is accessible from the environment where you'll run this MCP server.
3.2. Local Run
- Clone the repository:
# Clone the repository
$ git clone https://github.com/ntk148v/alertmanager-mcp-server.git
- Configure the environment variables for your Prometheus server, either through a .env file or system environment variables:
# Set environment variables (see .env.sample)
ALERTMANAGER_URL=http://your-alertmanager:9093
ALERTMANAGER_USERNAME=your_username # optional
ALERTMANAGER_PASSWORD=your_password # optional
- Add the server configuration to your client configuration file. For example, for Claude Desktop:
{
"mcpServers": {
"alertmanager": {
"command": "uv",
"args": [
"--directory",
"<full path to alertmanager-mcp-server directory>",
"run",
"src/alertmanager_mcp_server/server.py"
],
"env": {
"ALERTMANAGER_URL": "http://your-alertmanager:9093s",
"ALERTMANAGER_USERNAME": "your_username",
"ALERTMANAGER_PASSWORD": "your_password"
}
}
}
}
3.3. Docker Run
- Run it with pre-built image (or you can build it yourself):
$ docker run -e ALERTMANAGER_URL=http://your-alertmanager:9093 \
-e ALERTMANAGER_USERNAME=your_username \
-e ALERTMANAGER_PASSWORD=your_password \
-p 8000:8000 ghcr.io/ntk148v/alertmanager-mcp-server
- Running with Docker in Claude Desktop:
{
"mcpServers": {
"alertmanager": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "ALERTMANAGER_URL",
"-e", "ALERTMANAGER_USERNAME",
"-e", "ALERTMANAGER_PASSWORD",
"ghcr.io/ntk148v/alertmanager-mcp-server:latest"
],
"env": {
"ALERTMANAGER_URL": "http://your-alertmanager:9093s",
"ALERTMANAGER_USERNAME": "your_username",
"ALERTMANAGER_PASSWORD": "your_password"
}
}
}
}
This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e flag with just the variable name, and providing the actual values in the env object.
4. Tools
The MCP server exposes tools for querying and managing Alertmanager, following its API v2:
- Get status:
get_status() - List alerts:
get_alerts() - List silences:
get_silences() - Create silence:
post_silence(silence_dict) - Delete silence:
delete_silence(silence_id) - List receivers:
get_receivers() - List alert groups:
get_alert_groups()
See src/alertmanager_mcp_server/server.py for full API details.
5. Development
Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.
This project uses uv to manage dependencies. Install uv following the instructions for your platform.
# Clone the repository
$ git clone https://github.com/ntk148v/alertmanager-mcp-server.git
$ uv venv
$ source .venv/bin/activate # On Unix/macOS
$ .venv\Scripts\activate # On Windows
$ uv pip install -e .
# run test
$ pytest
6. License
<div align="center"> <sub>Made with ❤️ by <a href="https://github.com/ntk148v">@ntk148v</a></sub> </div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。