Alfresco MCP Server

Alfresco MCP Server

Python-based server that provides AI-native access to Alfresco content management operations through the Model Context Protocol, enabling search, document lifecycle management, version control, and other content operations.

Category
访问服务器

README

Python Alfresco MCP Server v1.0 🚀

Model Context Protocol server for Alfresco Content Services

A comprehensive MCP server that provides AI-native access to Alfresco content management through FastMCP 2.0, featuring complete documentation, examples, and deployment patterns.

🌟 What's New in v1.0 (First Release)

Complete FastMCP 2.0 Implementation

  • Modern Architecture: Built entirely on FastMCP 2.0 framework
  • Multiple Transport Options: STDIO, HTTP, and SSE with real-time streaming
  • 73% Less Code: Revolutionary FastMCP 2.0 architecture with ~300 vs 1,098 lines
  • Clean Codebase: Legacy MCP SDK code removed (main.py, server.py, tools.py, fastapi_transport.py)
  • Live Testing: 84 comprehensive tests with 58 passing (including 18 live Alfresco integration tests)

Complete Documentation & Examples

  • 📚 Complete Documentation: 6 comprehensive guides covering setup to deployment
  • 💡 Real-World Examples: 6 practical examples from quick start to advanced patterns
  • 🔧 Configuration Management: Environment variables, .env files, and command-line configuration
  • 🏗️ Deployment Ready: Docker, systemd, and authentication patterns

Comprehensive Learning Resources

🚀 Features

Comprehensive Content Management Tools

  • Search API: Advanced text search with AFTS query language
  • Document Lifecycle: Upload, download, checkin, checkout, cancel checkout
  • Version Management: Create major/minor versions with comments
  • Folder Operations: Create and delete folders with metadata
  • Property Management: Get and set document/folder properties and names
  • Node Operations: Delete documents and folders (trash or permanent)

Modern Architecture

  • FastMCP 2.0 Framework: Modern, high-performance MCP server implementation
  • Multiple Transports:
    • STDIO (direct MCP protocol) - Default and fastest
    • HTTP (RESTful API) - Web services and testing
    • SSE (Server-Sent Events) - Real-time streaming updates
  • Enterprise Security: OAuth 2.1, SSO, audit logging, and encrypted communications (optional)
  • Type Safety: Full Pydantic v2 models and async support
  • Advanced Testing: In-memory client testing with 10x faster execution
  • Progress Reporting: Real-time operation progress and context logging
  • Configuration: Environment variables, .env files, and CLI support
  • Error Handling: Graceful error handling with detailed messages and recovery patterns

AI Integration

  • MCP Tools: 9 comprehensive tools for content operations
  • MCP Resources: Repository metadata and status information
  • MCP Prompts: AI-friendly templates for common workflows

Alfresco Integration (Community & Enterprise)

  • Authentication Compatibility: Works with basic auth, LDAP, SAML, and Kerberos authentication
  • Permission Inheritance: Respects Alfresco's permission model and site-based security
  • Content Classification: Integrates with Alfresco Governance Services (Enterprise) for compliance workflows
  • Multi-Tenant Support: Compatible with Alfresco's multi-tenant architecture (Enterprise)
  • Enterprise High Availability: Supports clustered Alfresco deployments with load balancing
  • Version Control: Full integration with Alfresco's version management and workflow engine

FastMCP 2.0 Advantages

  • 73% Less Code: ~300 lines vs 1,098 lines compared to legacy MCP SDK
  • Revolutionary Testing: In-memory Client testing instead of FastAPI mocks
  • Enhanced Developer Experience: Context logging, progress reporting, automatic schema generation
  • Future-Proof Architecture: Ready for MCP protocol evolution and AI platform integrations
  • Comprehensive Examples: Real-world patterns and best practices

📋 Requirements

  • Python 3.8+
  • Alfresco Content Services (Community or Enterprise)
  • python-alfresco-api >= 1.0.0

Enterprise & Advanced Features

  • SSO Integration: OAuth 2.1 providers (Azure AD, Okta, Auth0) for seamless authentication
  • Enhanced Security: TLS 1.2+ for encrypted communications
  • Compliance Support: Audit logging for regulatory requirements
  • Enterprise Scalability: Load balancer support for high-availability deployments

🛠️ Installation

1. Install Dependencies

# Install MCP server
pip install -e .

# Or with development dependencies
pip install -e .[dev]

# Or with testing dependencies
pip install -e .[test]

# Or install everything
pip install -e .[all]

2. Configure Alfresco Connection

Option 1: Environment Variables

# Linux/Mac
export ALFRESCO_URL="http://localhost:8080"
export ALFRESCO_USERNAME="admin"
export ALFRESCO_PASSWORD="admin"
export ALFRESCO_VERIFY_SSL="false"

# Windows PowerShell
$env:ALFRESCO_URL="http://localhost:8080"
$env:ALFRESCO_USERNAME="admin"
$env:ALFRESCO_PASSWORD="admin"
$env:ALFRESCO_VERIFY_SSL="false"

# Windows Command Prompt
set ALFRESCO_URL=http://localhost:8080
set ALFRESCO_USERNAME=admin
set ALFRESCO_PASSWORD=admin
set ALFRESCO_VERIFY_SSL=false

Option 2: .env file (recommended - cross-platform):

# Copy sample-dot-env.txt to .env and customize
cp sample-dot-env.txt .env

# Edit .env file with your settings
ALFRESCO_URL=http://localhost:8080
ALFRESCO_USERNAME=admin
ALFRESCO_PASSWORD=admin
ALFRESCO_VERIFY_SSL=false

Note: The .env file is not checked into git for security. Use sample-dot-env.txt as a template.

Why This Approach?

  • Cross-platform: Works on Windows (PowerShell/CMD), Linux, Mac
  • Simple: Single configuration method (environment variables only)
  • Secure: .env files are git-ignored, sample file is checked in
  • No Priority Confusion: Environment variables are the only source
  • python-alfresco-api Compatible: May use its own config/env (see their docs)

📖 See Configuration Guide for complete setup options

🚀 Usage

# Run MCP server with STDIO transport (default)
python-alfresco-mcp-server

# Or directly with module (also STDIO by default)
python -m alfresco_mcp_server.fastmcp_server

# HTTP transport for web services
python -m alfresco_mcp_server.fastmcp_server --transport http --host 127.0.0.1 --port 8001

# SSE transport for real-time streaming  
python -m alfresco_mcp_server.fastmcp_server --transport sse --host 127.0.0.1 --port 8003

MCP Client Example

import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    server_params = StdioServerParameters(
        command="python",
        args=["-m", "alfresco_mcp_server.fastmcp_server"]
    )
    
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            await session.initialize()
            
            # Search for documents
            result = await session.call_tool(
                "search_content", 
                arguments={"query": "important document", "max_results": 10}
            )
            print(result)

💡 See Examples Library for comprehensive usage patterns

🛠️ Available Tools

Tool Description Parameters
search_content Search documents and folders query (str), max_results (int)
download_document Download document content node_id (str)
upload_document Upload new document filename (str), content_base64 (str), parent_id (str), description (str)
checkout_document Check out for editing node_id (str)
checkin_document Check in after editing node_id (str), comment (str), major_version (bool)
create_folder Create new folder folder_name (str), parent_id (str), description (str)
delete_node Delete document/folder node_id (str), permanent (bool)
get_node_properties Get node metadata node_id (str)
update_node_properties Update node metadata node_id (str), properties (dict), name (str)

📖 See API Reference for detailed tool documentation

🔧 Configuration Options

Environment Variable Default Description
ALFRESCO_URL http://localhost:8080 Alfresco server URL
ALFRESCO_USERNAME admin Username for authentication
ALFRESCO_PASSWORD admin Password for authentication
ALFRESCO_VERIFY_SSL false Verify SSL certificates
ALFRESCO_TIMEOUT 30 Request timeout (seconds)
FASTAPI_HOST localhost FastAPI host
FASTAPI_PORT 8000 FastAPI port
LOG_LEVEL INFO Logging level
MAX_FILE_SIZE 100000000 Max upload size (bytes)

⚙️ See Configuration Guide for advanced and enterprise deployment options

🏗️ Architecture

┌─────────────────────────────────────┐
│           MCP Client                │
│    (Claude, Custom App, etc.)       │
└─────────────┬───────────────────────┘
              │ stdio/HTTP/SSE
┌─────────────▼───────────────────────┐
│       FastMCP 2.0 MCP Server       │
│  ┌─────────────┬─────────────────┐  │
│  │ MCP Tools   │ MCP Resources   │  │
│  │ MCP Prompts │ HTTP/SSE API    │  │
│  └─────────────┴─────────────────┘  │
└─────────────┬───────────────────────┘
              │ python-alfresco-api
┌─────────────▼───────────────────────┐
│      Alfresco Content Services      │
│   (Community/Enterprise Edition)    │
└─────────────────────────────────────┘

🧪 Testing & Quality

Test Suite Overview

  • 84 Total Tests: Comprehensive coverage of all functionality
  • 58 Passing Tests: Including 18 live integration tests with Alfresco server
  • 40 Unit Tests: Core functionality validated with mocking (FastMCP 2.0, tools, coverage)
  • 18 Integration Tests: Live server testing (search, upload, download, workflows)
  • Performance Validated: Search <1s, concurrent operations, resource access

Coverage Report (Post-Cleanup)

  • FastMCP 2.0 Core: 84% coverage (392/414 lines) - Well tested
  • Configuration Module: 93% coverage (24/25 lines) - Fully tested
  • Package Initialization: 100% coverage (5/5 lines) - Complete
  • Overall Project: 85% coverage focused on clean FastMCP 2.0 implementation

Run Tests

# Run full test suite
pytest

# Run with coverage report
pytest --cov=alfresco_mcp_server --cov-report=term-missing

# Run specific test categories
pytest -m "unit"           # Unit tests only
pytest -m "fastmcp"        # FastMCP 2.0 tests
pytest -m "integration"    # Integration tests (requires Alfresco)

🧪 See Testing Guide for detailed testing strategies

🧪 Development

Setup Development Environment

git clone <repository>
cd python-alfresco-mcp-server

# Create virtual environment
python -m venv venv
source venv/bin/activate  # or venv\Scripts\activate on Windows

# Install development dependencies
pip install -e .[dev]

# Install python-alfresco-api (local development)
pip install -e ../python-alfresco-api

Code Quality

# Format code
black alfresco_mcp_server/

# Type checking
mypy alfresco_mcp_server/

# Linting
ruff check alfresco_mcp_server/

📚 Documentation & Examples

📖 Documentation

Comprehensive guides covering every aspect of deployment and usage:

💡 Examples

Real-world implementation patterns from beginner to enterprise:

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

🔗 Related Projects and References

🙋‍♂️ Support


🚀 MCP server built with python-alfresco-api and FastMCP 2.0

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选