Algorand MCP Server
Enables interaction with the Algorand blockchain network including account management, payments, asset creation and transfers, along with general utility tools. Provides secure mnemonic encryption and supports both testnet and mainnet environments.
README
MCP Server with Algorand Integration
This server provides blockchain transaction capabilities for the Algorand network along with general utility tools.
Overview
This MCP server provides the following tools to AI assistants:
General Tools
- echo: Echo back any message (useful for testing connectivity)
- calculate: Perform basic mathematical calculations
- get_current_time: Get the current time in any timezone
Algorand Blockchain Tools
- generate_algorand_account: Generate a new Algorand account with address and mnemonic
- get_account_info: Get account information including balance and assets
- send_payment: Send Algo payment transaction
- create_asset: Create a new Algorand Standard Asset (ASA)
- opt_in_to_asset: Opt into an Algorand Standard Asset
- transfer_asset: Transfer an Algorand Standard Asset
- get_asset_info: Get information about an asset
- get_transaction: Get transaction details by transaction ID
Security Features
Mnemonic Phrase Protection
- Encryption: Built-in AES-256-GCM encryption for mnemonic phrases
- Secure Storage: Methods for encrypting/decrypting wallet credentials
- Memory Safety: Sensitive data is handled securely and not logged
Network Configuration
- Testnet Default: Safely defaults to Algorand testnet
- Environment-based: Network configuration through environment variables
- Production Ready: Supports mainnet for production use
Prerequisites
- Node.js 18+
- npm or yarn
- TypeScript
Installation
- Clone or download this project
- Install dependencies:
npm install - Copy environment configuration:
cp .env.example .env - Configure your Algorand network in
.env(defaults to testnet)
Development
Building the Project
npm run build
Running the Server
npm start
Development Mode
For development with automatic rebuilding:
npm run dev
Configuration
For VSCode
{
"mcpServers": {
"algorand-mcp-server": {
"command": "node",
"args": ["path/to/your/project/dist/index.js"]
}
}
}
For VS Code Debugging
The project includes a .vscode/mcp.json configuration file for debugging within VS Code. You can use this with the MCP extension for VS Code.
Available Tools
echo
- Description: Echo back the provided message
- Parameters:
message(string, required): The message to echo back
calculate
- Description: Perform basic mathematical calculations
- Parameters:
expression(string, required): Mathematical expression to evaluate
get_current_time
- Description: Get the current time in a specified timezone
- Parameters:
timezone(string, optional): Timezone identifier (defaults to UTC)
Project Structure
├── src/
│ └── index.ts # Main server implementation
├── dist/ # Compiled JavaScript output
├── .vscode/
│ └── mcp.json # VS Code MCP configuration
├── .github/
│ └── copilot-instructions.md # GitHub Copilot instructions
├── package.json # Node.js package configuration
├── tsconfig.json # TypeScript configuration
└── README.md # This file
Development Guide
Adding New Tools
- Define the tool schema in the
TOOLSarray - Create a Zod schema for input validation
- Add a case in the
CallToolRequestSchemahandler - Implement the tool logic with proper error handling
Example Tool Implementation
const MyToolArgsSchema = z.object({
input: z.string(),
});
// Add to TOOLS array
{
name: 'my_tool',
description: 'Description of what the tool does',
inputSchema: {
type: 'object',
properties: {
input: {
type: 'string',
description: 'Input parameter description',
},
},
required: ['input'],
},
}
// Add to request handler
case 'my_tool': {
const parsed = MyToolArgsSchema.parse(args);
// Implement tool logic here
return {
content: [
{
type: 'text',
text: `Result: ${parsed.input}`,
},
],
};
}
Security Considerations
- Input validation is performed using Zod schemas
- The
calculatetool useseval()for demonstration purposes only - in production, use a safer math evaluation library - Always validate and sanitize inputs before processing
Contributing
- Fork the repository
- Create a feature branch
- Implement your changes with proper tests
- Submit a pull request
License
ISC License - see package.json for details
Resources
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。