Algorand MCP Server

Algorand MCP Server

Enables interaction with the Algorand blockchain network including account management, payments, asset creation and transfers, along with general utility tools. Provides secure mnemonic encryption and supports both testnet and mainnet environments.

Category
访问服务器

README

MCP Server with Algorand Integration

This server provides blockchain transaction capabilities for the Algorand network along with general utility tools.

Overview

This MCP server provides the following tools to AI assistants:

General Tools

  • echo: Echo back any message (useful for testing connectivity)
  • calculate: Perform basic mathematical calculations
  • get_current_time: Get the current time in any timezone

Algorand Blockchain Tools

  • generate_algorand_account: Generate a new Algorand account with address and mnemonic
  • get_account_info: Get account information including balance and assets
  • send_payment: Send Algo payment transaction
  • create_asset: Create a new Algorand Standard Asset (ASA)
  • opt_in_to_asset: Opt into an Algorand Standard Asset
  • transfer_asset: Transfer an Algorand Standard Asset
  • get_asset_info: Get information about an asset
  • get_transaction: Get transaction details by transaction ID

Security Features

Mnemonic Phrase Protection

  • Encryption: Built-in AES-256-GCM encryption for mnemonic phrases
  • Secure Storage: Methods for encrypting/decrypting wallet credentials
  • Memory Safety: Sensitive data is handled securely and not logged

Network Configuration

  • Testnet Default: Safely defaults to Algorand testnet
  • Environment-based: Network configuration through environment variables
  • Production Ready: Supports mainnet for production use

Prerequisites

  • Node.js 18+
  • npm or yarn
  • TypeScript

Installation

  1. Clone or download this project
  2. Install dependencies:
    npm install
    
  3. Copy environment configuration:
    cp .env.example .env
    
  4. Configure your Algorand network in .env (defaults to testnet)

Development

Building the Project

npm run build

Running the Server

npm start

Development Mode

For development with automatic rebuilding:

npm run dev

Configuration

For VSCode

{
  "mcpServers": {
    "algorand-mcp-server": {
      "command": "node",
      "args": ["path/to/your/project/dist/index.js"]
    }
  }
}

For VS Code Debugging

The project includes a .vscode/mcp.json configuration file for debugging within VS Code. You can use this with the MCP extension for VS Code.

Available Tools

echo

  • Description: Echo back the provided message
  • Parameters:
    • message (string, required): The message to echo back

calculate

  • Description: Perform basic mathematical calculations
  • Parameters:
    • expression (string, required): Mathematical expression to evaluate

get_current_time

  • Description: Get the current time in a specified timezone
  • Parameters:
    • timezone (string, optional): Timezone identifier (defaults to UTC)

Project Structure

├── src/
│   └── index.ts          # Main server implementation
├── dist/                 # Compiled JavaScript output
├── .vscode/
│   └── mcp.json         # VS Code MCP configuration
├── .github/
│   └── copilot-instructions.md  # GitHub Copilot instructions
├── package.json          # Node.js package configuration
├── tsconfig.json         # TypeScript configuration
└── README.md            # This file

Development Guide

Adding New Tools

  1. Define the tool schema in the TOOLS array
  2. Create a Zod schema for input validation
  3. Add a case in the CallToolRequestSchema handler
  4. Implement the tool logic with proper error handling

Example Tool Implementation

const MyToolArgsSchema = z.object({
  input: z.string(),
});

// Add to TOOLS array
{
  name: 'my_tool',
  description: 'Description of what the tool does',
  inputSchema: {
    type: 'object',
    properties: {
      input: {
        type: 'string',
        description: 'Input parameter description',
      },
    },
    required: ['input'],
  },
}

// Add to request handler
case 'my_tool': {
  const parsed = MyToolArgsSchema.parse(args);
  // Implement tool logic here
  return {
    content: [
      {
        type: 'text',
        text: `Result: ${parsed.input}`,
      },
    ],
  };
}

Security Considerations

  • Input validation is performed using Zod schemas
  • The calculate tool uses eval() for demonstration purposes only - in production, use a safer math evaluation library
  • Always validate and sanitize inputs before processing

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Implement your changes with proper tests
  4. Submit a pull request

License

ISC License - see package.json for details

Resources

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选