AlphaFold MCP Server
AlphaFold MCP Server
README

AlphaFold MCP Server
A comprehensive Model Context Protocol (MCP) server that provides access to the AlphaFold Protein Structure Database through a rich set of tools and resources for protein structure prediction analysis.
Overview
This MCP server enables seamless integration with AlphaFold's vast collection of protein structure predictions, offering tools for structure retrieval, confidence analysis, batch processing, and visualization preparation. Perfect for researchers, bioinformaticians, and structural biologists working with predicted protein structures.
Features
🧬 Core Structure Tools
- Structure Retrieval: Get AlphaFold predictions by UniProt ID
- Multi-format Downloads: Support for PDB, CIF, BCIF, and JSON formats
- Availability Checking: Verify if predictions exist for specific proteins
🔍 Search & Discovery
- Structure Search: Find proteins by name, gene, or organism
- Organism Browsing: List all available structures for specific species
- Coverage Statistics: Get comprehensive organism-level statistics
📊 Confidence & Quality Analysis
- Per-residue Confidence: Detailed confidence scores for each amino acid
- Region Analysis: Identify high/low confidence structural regions
- Quality Validation: Assess overall prediction reliability
⚡ Batch Processing
- Bulk Retrieval: Process multiple proteins simultaneously
- Batch Downloads: Efficient multi-structure downloads
- Parallel Analysis: Confidence analysis for protein sets
🔬 Comparative Analysis
- Structure Comparison: Side-by-side analysis of multiple proteins
- Similarity Search: Find structurally related proteins
- Coverage Comparison: Analyze prediction completeness
🎨 Visualization Integration
- PyMOL Scripts: Ready-to-use visualization scripts
- ChimeraX Integration: Confidence-colored structure viewing
- Custom Export Formats: Flexible data export options
Installation
# Clone or create the server directory
npm install
# Build the server
npm run build
Usage
As MCP Server
Add to your MCP configuration:
{
"mcpServers": {
"alphafold-server": {
"command": "node",
"args": ["/path/to/alphafold-server/build/index.js"]
}
}
}
Direct Usage
# Start the server
npm start
# Or run directly
node build/index.js
Available Tools
Core Structure Tools
get_structure
Retrieve AlphaFold structure prediction for a specific UniProt ID.
Parameters:
uniprotId(required): UniProt accession (e.g., "P21359", "Q8N726")format(optional): Output format - "pdb", "cif", "bcif", or "json" (default: "json")
Example:
{
"uniprotId": "P04637",
"format": "json"
}
download_structure
Download AlphaFold structure file in specified format.
Parameters:
uniprotId(required): UniProt accessionformat(optional): File format - "pdb", "cif", or "bcif" (default: "pdb")
check_availability
Check if AlphaFold structure prediction is available for a UniProt ID.
Parameters:
uniprotId(required): UniProt accession to check
Search & Discovery Tools
search_structures
Search for available AlphaFold structures by protein name or gene.
Parameters:
query(required): Search term (protein name, gene name, etc.)organism(optional): Filter by organismsize(optional): Number of results (1-100, default: 25)
list_by_organism
List all available structures for a specific organism.
Parameters:
organism(required): Organism name (e.g., "Homo sapiens", "Escherichia coli")size(optional): Number of results (1-100, default: 50)
get_organism_stats
Get statistics about AlphaFold coverage for an organism.
Parameters:
organism(required): Organism name
Confidence & Quality Tools
get_confidence_scores
Get per-residue confidence scores for a structure prediction.
Parameters:
uniprotId(required): UniProt accessionthreshold(optional): Confidence threshold (0-100)
analyze_confidence_regions
Analyze confidence score distribution and identify high/low confidence regions.
Parameters:
uniprotId(required): UniProt accession
get_prediction_metadata
Get metadata about the prediction including version, date, and quality metrics.
Parameters:
uniprotId(required): UniProt accession
Batch Processing Tools
batch_structure_info
Get structure information for multiple proteins simultaneously.
Parameters:
uniprotIds(required): Array of UniProt accessions (max 50)format(optional): Output format - "json" or "summary" (default: "json")
batch_download
Download multiple structure files.
Parameters:
uniprotIds(required): Array of UniProt accessions (max 20)format(optional): File format - "pdb" or "cif" (default: "pdb")
batch_confidence_analysis
Analyze confidence scores for multiple proteins.
Parameters:
uniprotIds(required): Array of UniProt accessions (max 30)
Comparative Analysis Tools
compare_structures
Compare multiple AlphaFold structures for analysis.
Parameters:
uniprotIds(required): Array of UniProt accessions to compare (2-10)
find_similar_structures
Find AlphaFold structures similar to a given protein.
Parameters:
uniprotId(required): Reference UniProt accessionorganism(optional): Filter by organism
Coverage & Completeness Tools
get_coverage_info
Get information about sequence coverage in the AlphaFold prediction.
Parameters:
uniprotId(required): UniProt accession
validate_structure_quality
Validate and assess the overall quality of an AlphaFold prediction.
Parameters:
uniprotId(required): UniProt accession
Export & Integration Tools
export_for_pymol
Export structure data formatted for PyMOL visualization.
Parameters:
uniprotId(required): UniProt accessionincludeConfidence(optional): Include confidence score coloring (default: true)
export_for_chimerax
Export structure data formatted for ChimeraX visualization.
Parameters:
uniprotId(required): UniProt accessionincludeConfidence(optional): Include confidence score coloring (default: true)
get_api_status
Check AlphaFold API status and database statistics.
Parameters: None
Available Resources
Resource Templates
alphafold://structure/{uniprotId}
MIME Type: application/json
Description: Complete AlphaFold structure prediction for a UniProt ID
alphafold://pdb/{uniprotId}
MIME Type: chemical/x-pdb
Description: PDB format structure file for a UniProt ID
alphafold://confidence/{uniprotId}
MIME Type: application/json
Description: Per-residue confidence scores for a structure prediction
alphafold://summary/{organism}
MIME Type: application/json
Description: Summary of all available structures for an organism
Example Workflows
Basic Structure Analysis
// 1. Check if structure is available
await use_mcp_tool("alphafold-server", "check_availability", {
uniprotId: "P04637",
});
// 2. Get structure metadata
await use_mcp_tool("alphafold-server", "get_prediction_metadata", {
uniprotId: "P04637",
});
// 3. Analyze confidence scores
await use_mcp_tool("alphafold-server", "get_confidence_scores", {
uniprotId: "P04637",
threshold: 70,
});
Comparative Study
// Compare multiple related proteins
await use_mcp_tool("alphafold-server", "compare_structures", {
uniprotIds: ["P04637", "P53350", "P63151"],
});
// Batch confidence analysis
await use_mcp_tool("alphafold-server", "batch_confidence_analysis", {
uniprotIds: ["P04637", "P53350", "P63151"],
});
Visualization Preparation
// Export for PyMOL with confidence coloring
await use_mcp_tool("alphafold-server", "export_for_pymol", {
uniprotId: "P04637",
includeConfidence: true,
});
// Export for ChimeraX
await use_mcp_tool("alphafold-server", "export_for_chimerax", {
uniprotId: "P04637",
includeConfidence: true,
});
Organism-wide Analysis
// Get human protein statistics
await use_mcp_tool("alphafold-server", "get_organism_stats", {
organism: "Homo sapiens",
});
// List available structures
await use_mcp_tool("alphafold-server", "list_by_organism", {
organism: "Homo sapiens",
size: 100,
});
API Reference
The server connects to the AlphaFold API at https://alphafold.ebi.ac.uk/api/ and provides structured access to:
- Structure Predictions: Complete protein structure data
- Confidence Scores: Per-residue reliability metrics
- Metadata: Prediction versions, dates, and quality information
- Cross-references: Links to other databases and resources
Error Handling
The server includes comprehensive error handling for:
- Invalid UniProt IDs
- Missing structure predictions
- API connectivity issues
- Rate limiting and timeouts
- Malformed requests
Rate Limiting
Please be mindful of API usage:
- Batch operations are limited to reasonable sizes
- Large requests are automatically chunked
- Built-in delays prevent API overload
Contributing
Contributions are welcome! Please ensure:
- TypeScript type safety
- Comprehensive error handling
- Documentation for new features
- Testing with real AlphaFold data
About
Developed by Augmented Nature - augmentednature.ai
Augmented Nature specializes in creating AI-powered tools and infrastructure for scientific research and data analysis.
License
MIT License - see LICENSE file for details.
Citation
If you use this MCP server in your research, please cite:
- AlphaFold Database: https://alphafold.ebi.ac.uk/
- Model Context Protocol: https://modelcontextprotocol.io/
Support
For issues and questions:
- Check the AlphaFold API documentation
- Review error messages for debugging hints
- Ensure UniProt IDs are valid and current
Note: This server provides a convenient interface to AlphaFold data but does not store or cache structure data. All data is retrieved directly from the official AlphaFold API.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。