AlphaGenome MCP Server
Enables AI-powered genomic variant analysis including variant impact prediction, regulatory element discovery, and batch variant scoring. Currently operates in mock mode as a proof-of-concept awaiting the public release of Google DeepMind's AlphaGenome API.
README
AlphaGenome MCP Server
An MCP server that provides natural language access to Google DeepMind's AlphaGenome for regulatory genomics analysis and variant effect prediction.
Features
- Variant Effect Prediction: Analyze regulatory impacts of genetic variants across 11 molecular modalities (RNA-seq, ChIP-seq, ATAC-seq, splicing, etc.)
- Regulatory Element Discovery: Identify promoters, enhancers, and transcription factor binding sites in genomic regions
- Batch Variant Scoring: Prioritize multiple variants by regulatory impact for GWAS and sequencing studies
- Natural Language Interface: Query variants using rsIDs or genomic coordinates without coding
- Multi-Modal Analysis: Unified predictions for gene expression, chromatin accessibility, TF binding, and 3D chromatin structure
Tools
predict_variant_effect
Predicts the regulatory impact of a single genetic variant.
Inputs:
chromosome(string): Chromosome name (chr1-chr22, chrX, chrY)position(number): Genomic position (1-based)ref(string): Reference allele (A/T/G/C)alt(string): Alternate allele (A/T/G/C)tissue_type(string, optional): Tissue context (UBERON term, e.g., "UBERON:0000955" for brain)output_types(array, optional): Specific modalities to analyze
Example:
"Analyze the regulatory impact of chr19:44908684T>C in brain tissue"
analyze_region
Identifies regulatory elements in a genomic region.
Inputs:
chromosome(string): Chromosome namestart(number): Start position (1-based)end(number): End positionanalysis_types(array, optional): Element types to find (promoter, enhancer, etc.)resolution(string, optional): "base" (1bp) or "window" (128bp)
Example:
"Find enhancers in chr11:5225464-5227071"
batch_score_variants
Scores and ranks multiple variants by regulatory impact.
Inputs:
variants(array): List of variants with chr, pos, ref, altscoring_metric(string): Metric for ranking (rna_seq, splice, regulatory_impact, combined)top_n(number, optional): Number of top variants to returninclude_interpretation(boolean, optional): Include clinical interpretation
Example:
"Score these variants by splicing impact: chr7:117199563C>T, chr2:127892810G>A"
Installation
Requirements
- Node.js ≥18.0.0
- Python ≥3.8 with
alphagenomeandnumpy - AlphaGenome API key (request here)
Quick Start
# Install Python dependencies
pip install alphagenome numpy
# Add to Claude Desktop
claude mcp add alphagenome -- npx -y @jolab/alphagenome-mcp@latest --api-key YOUR_API_KEY
Configuration
Usage with Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"alphagenome": {
"command": "npx",
"args": ["-y", "@jolab/alphagenome-mcp@latest"],
"env": {
"ALPHAGENOME_API_KEY": "your-api-key-here"
}
}
}
}
Or use command-line argument:
{
"mcpServers": {
"alphagenome": {
"command": "npx",
"args": [
"-y",
"@jolab/alphagenome-mcp@latest",
"--api-key",
"your-api-key-here"
]
}
}
}
Verification
Test the installation:
"Analyze chr19:44908684T>C with AlphaGenome"
Expected: Detailed regulatory impact report within 30-60 seconds.
Usage Examples
Basic Analysis
Single Variant:
"What is the regulatory impact of rs429358?"
Specific Tissue:
"Analyze chr6:41129252C>T in brain tissue"
Custom Modalities:
"Show only RNA-seq and splicing effects for chr2:127892810G>A"
Advanced Queries
Region Exploration:
"Find all regulatory elements in the APOE gene region"
Variant Prioritization:
"Rank these 10 variants by their impact on gene expression"
Cross-Tissue Comparison:
"Compare the effect of this variant in brain vs liver"
Mechanistic Investigation:
"Which transcription factors are affected by rs744373?"
Use Cases
- Post-GWAS Analysis: Prioritize GWAS hits by functional impact
- Clinical Interpretation: Assess pathogenicity of VUS (variants of uncertain significance)
- Drug Target Discovery: Identify regulatory variants affecting target genes
- Synthetic Biology: Design tissue-specific regulatory elements
- Evolutionary Genomics: Analyze regulatory changes across species
Development
Build from Source
git clone https://github.com/taehojo/alphagenome-mcp.git
cd alphagenome-mcp
npm install
pip install -r requirements.txt
npm run build
Project Structure
src/
├── index.ts # MCP server
├── alphagenome-client.ts # API client
├── tools.ts # Tool definitions
└── utils/ # Validation & formatting
scripts/
└── alphagenome_bridge.py # Python bridge
Testing
npm run lint
npm run typecheck
npm run build
Architecture
Claude Desktop → MCP Server (TypeScript) → Python Bridge → AlphaGenome API
The server uses a Python subprocess bridge to interface with AlphaGenome's Python-only SDK.
Performance
- First call: 30-60 seconds (initialization)
- Subsequent calls: 5-15 seconds
- Recommended: <1000 variants per session
- Modalities: 11 (RNA-seq, CAGE, PRO-cap, splice sites, DNase, ATAC, histone mods, TF binding, contact maps)
- Resolution: Single base-pair for most modalities
Limitations
- Requires active internet and API access
- InDels and structural variants not fully supported
- Accuracy decreases for regulatory elements >100kb from TSS
- Human and mouse genomes only
- Research use only (not validated for clinical diagnostics)
Citation
@software{jo2025alphagenome_mcp,
author = {Jo, Taeho},
title = {AlphaGenome MCP Server},
year = {2025},
url = {https://github.com/taehojo/alphagenome-mcp},
version = {0.1.5}
}
AlphaGenome:
@article{avsec2025alphagenome,
title = {AlphaGenome: Unified prediction of variant effects},
author = {Avsec, Žiga and Latysheva, Natasha and Cheng, Jun and others},
journal = {bioRxiv},
year = {2025},
doi = {10.1101/2025.06.27.600757}
}
License
MIT License - Copyright (c) 2025 Taeho Jo
Links
- npm: https://www.npmjs.com/package/@jolab/alphagenome-mcp
- GitHub: https://github.com/taehojo/alphagenome-mcp
- Issues: https://github.com/taehojo/alphagenome-mcp/issues
- AlphaGenome: https://deepmind.google/discover/blog/alphagenome/
- Model Context Protocol: https://modelcontextprotocol.io/
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。