Amazing Marvin MCP Server

Amazing Marvin MCP Server

Connects AI assistants to Amazing Marvin for comprehensive task management, including creating and organizing tasks, time tracking, viewing schedules, and managing projects through natural language.

Category
访问服务器

README

Amazing Marvin MCP Server

🌐 Hosted on Smithery - Install-free access to Amazing Marvin through Claude and other MCP clients

A high-quality Model Context Protocol (MCP) server that connects AI assistants to Amazing Marvin, the powerful task management and productivity system. Built with FastMCP and deployed on Smithery for hosted, zero-installation access.

Deploy to Smithery

✨ What's New in v2.0 (Smithery)

Complete migration to Smithery for hosted deployment:

  • 🌐 Hosted Infrastructure: No local installation, Python, or dependencies required
  • 🔐 Secure Configuration: API tokens managed through Smithery's session config
  • 📊 Usage Monitoring: Track server usage and performance
  • 🚀 Auto-deployment: Push to GitHub → Automatic deployment
  • 🔄 Auto-scaling: Handle multiple concurrent users
  • 💪 Same Power: All 10 tools with identical functionality

Technical improvements:

  • FastMCP framework with @smithery.server() decorator
  • Pydantic V2 validation with session config schemas
  • Context-aware API authentication
  • Dual response formats (Markdown/JSON)
  • Enhanced error handling with actionable guidance

Quick Start

For Users

  1. Get your Amazing Marvin API token

    • Visit https://app.amazingmarvin.com/pre?api=
    • Copy your API_TOKEN
  2. Connect via Smithery

    • Visit: https://smithery.ai/server/amazing-marvin-mcp
    • Click "Connect"
    • Paste your API token when prompted
    • Use in Claude Desktop or other MCP clients
  3. Start using

    "Show me my tasks for today"
    "Create a task to review Q4 budget tomorrow"
    "What categories do I have?"
    

For Developers

See SMITHERY_DEPLOYMENT.md for deployment guide.

Local testing:

uv venv
uv pip install -r requirements.txt
uv run playground

Features

This MCP server provides 10 powerful tools for Amazing Marvin:

📋 Task Management

  • marvin_add_task - Create tasks with full support for scheduling, labels, time estimates, and Amazing Marvin shortcuts
  • marvin_get_todays_tasks - View all tasks scheduled for today or a specific date
  • marvin_mark_done - Mark tasks as complete (idempotent)
  • marvin_get_due_tasks - See all tasks due today or overdue with smart overdue indicators

🗂️ Organization

  • marvin_get_categories - List all your projects and categories with IDs
  • marvin_get_labels - View all available labels with IDs
  • marvin_get_children - Browse tasks within a specific project, category, or unassigned area

⏱️ Time Tracking

  • marvin_start_tracking - Start time tracking on a task
  • marvin_stop_tracking - Stop the currently running timer

🎨 Response Formats

All list operations support two output formats:

  • Markdown (default): Human-readable with headers, emojis, and formatting
  • JSON: Structured data for programmatic processing

Usage Examples

Creating Tasks

"Create a task called 'Review Q4 budget' due tomorrow with a 2-hour time estimate"

"Add a task 'Call dentist' with 15 minute estimate and schedule it for Friday"

"Create a task 'Finish presentation slides #Work @urgent ~120 +2024-03-20'"

Amazing Marvin shortcuts in task titles:

  • #ProjectName - Assign to project
  • @label - Add a label
  • ~60 - Time estimate (60 minutes)
  • +2024-03-15 - Set due date
  • ^1 - Set priority

Viewing Tasks

"Show me my tasks for today"

"What tasks are due today or overdue?"

"List all tasks in my Personal category"

"Show me tasks for March 15, 2024 in JSON format"

Managing Tasks

"Mark task task_abc123xyz as complete"

"Start tracking time on task task_abc123xyz"

"Stop the timer"

Organizing

"Show me all my categories and projects"

"What labels do I have?"

"List all unassigned tasks"

Technical Details

Architecture

Smithery Deployment:

  • Python 3.12+ runtime
  • FastMCP framework with @smithery.server() decorator
  • Context-aware authentication via ctx.session_config
  • HTTP/SSE transport (not STDIO)

Configuration:

class AmazingMarvinConfig(BaseModel):
    api_token: str = Field(
        ...,
        description="Your Amazing Marvin API token. Get it from: https://app.amazingmarvin.com/pre?api=",
        min_length=10
    )

Package Structure:

src/amazing_marvin_mcp/
├── __init__.py          # Package initialization
└── server.py            # Main server with tools

Key Features

  • Pydantic V2 Validation: Robust input validation with detailed constraints
  • Agent-Centric Design: Tools optimized for AI workflows, not just API wrappers
  • Dual Response Formats: Markdown (human-readable) and JSON (machine-readable)
  • Character Limits: Intelligent handling of large responses (25,000 char limit)
  • Tool Annotations: Proper hints for read-only, destructive, and idempotent operations
  • Comprehensive Docstrings: Detailed documentation with examples for every tool

Error Handling

The server provides actionable error messages:

  • 401 Unauthorized: Guides to check API token configuration
  • 404 Not Found: Suggests verifying IDs and item existence
  • 429 Rate Limit: Advises waiting before retry
  • 500 Server Error: Indicates Amazing Marvin service issues

All errors include specific next steps for resolution.

Development

Local Setup

# Clone repository
git clone https://github.com/LucaDeLeo/amazing-marvin-mcp.git
cd amazing-marvin-mcp

# Create virtual environment
uv venv

# Install dependencies
uv pip install -r requirements.txt

Testing

# Use Smithery playground (ngrok port-forwarding)
uv run playground

# Or run in development mode
uv run dev

Building Package

# Build distribution
python -m build

# Verify build
ls dist/
# Should show: amazing_marvin_mcp-2.0.0-py3-none-any.whl and .tar.gz

Deployment

See SMITHERY_DEPLOYMENT.md for complete deployment guide.

Quick deploy:

  1. Push to GitHub: git push origin main
  2. Go to https://smithery.ai/new
  3. Connect repository
  4. Click "Deploy"

API Reference

This server uses Amazing Marvin's Limited Access API:

  • API Documentation: https://github.com/amazingmarvin/MarvinAPI/wiki
  • Help Center: https://help.amazingmarvin.com/
  • API Base URL: https://serv.amazingmarvin.com/api

Endpoints used:

GET  /api/categories       - List all categories/projects
GET  /api/labels          - List all labels
GET  /api/children        - Get items in category
GET  /api/todayItems      - Get scheduled tasks
GET  /api/dueItems        - Get due/overdue tasks
POST /api/addTask         - Create task
POST /api/markDone        - Complete task
POST /api/track           - Start/stop timer

Security Notes

  • API Tokens: Stored encrypted in Smithery's session config, never in code
  • HTTPS Only: All communication over TLS 1.2+
  • Input Validation: Pydantic models prevent injection attacks
  • Limited Access API: Additional security layer vs Full Access

Contributing

Potential future enhancements:

  • Document update/delete operations (/api/doc/update, /api/doc/delete)
  • Project creation tool (/api/addProject)
  • Goals integration (/api/goals)
  • Habit tracking (/api/habits, /api/updateHabit)
  • Reminders management (/api/reminder/set)
  • Time blocks viewing (/api/todayTimeBlocks)
  • Tracked item status (/api/trackedItem)
  • Reward points system

When adding features, follow the same patterns: Pydantic model → @mcp.tool decorator → ctx: Context parameter → shared utilities → comprehensive docstring.

Support

Server Issues:

  • GitHub Issues: https://github.com/LucaDeLeo/amazing-marvin-mcp/issues

Smithery Platform:

  • Email: support@smithery.ai
  • Discord: https://discord.gg/Afd38S5p9A

Amazing Marvin API:

  • Email: support@amazingmarvin.com

License

MIT License - See LICENSE file

Acknowledgments


Version: 2.0.0 (Smithery Deployment) Repository: https://github.com/LucaDeLeo/amazing-marvin-mcp Smithery: https://smithery.ai/server/amazing-marvin-mcp

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选