AMC MCP Server
Provides a comprehensive movie booking experience for AMC Theatres, enabling users to discover movies, find showtimes, select seats, and process payments through conversational AI. Supports multi-location theater search with real-time seat availability and booking management.
README
AMC MCP Server 🎬
An Model Context Protocol (MCP) server that provides a comprehensive movie booking experience for AMC Theatres. This server enables conversational AI assistants to help users discover movies, find showtimes, book seats, and process payments through a simple API interface.
Features ✨
- Movie Discovery: Browse currently showing movies and get personalized recommendations
- Showtime Lookup: Find available showtimes by location, date, and movie
- Seat Selection: View interactive seat maps and check availability
- Booking Management: Reserve seats with real-time availability checking
- Payment Processing: Handle mock payment transactions with confirmation receipts
- Multi-location Support: Search across multiple AMC theater locations
Quick Start 🚀
Prerequisites
- Python 3.8+
- Docker (optional, for containerized deployment)
Installation
Option 1: Local Installation
- Clone the repository:
git clone <repository-url>
cd amc-mcp
- Install dependencies:
pip install -r requirements.txt
- Install the package:
pip install -e .
- Run the server:
python -m amc_mcp.fastmcp_server
Option 2: Docker Deployment
- Build and run with Docker Compose:
docker-compose up --build
- Or build and run manually:
docker build -t amc-mcp .
docker run -it amc-mcp
MCP Tools Reference 🛠️
1. get_now_showing
Returns a list of movies currently showing in a given location.
Input:
{
"location": "Boston, MA"
}
Output:
{
"location": "Boston, MA",
"movies": [
{
"movie_id": "mv001",
"title": "Dune: Part Two",
"rating": "PG-13",
"duration": 166,
"genre": "Sci-Fi/Action",
"description": "Paul Atreides unites with Chani..."
}
]
}
2. get_recommendations
Suggests movies based on mood, genre, or preferences.
Input:
{
"genre": "action",
"mood": "exciting"
}
Output:
{
"criteria": {"genre": "action", "mood": "exciting"},
"recommendations": [...]
}
3. get_showtimes
Fetches available showtimes for a specific movie and location.
Input:
{
"movie_id": "mv001",
"date": "2025-10-28",
"location": "Boston, MA"
}
Output:
{
"movie": {"id": "mv001", "title": "Dune: Part Two"},
"date": "2025-10-28",
"location": "Boston, MA",
"showtimes": [
{
"showtime_id": "st001",
"theater_name": "AMC Boston Common 19",
"theater_address": "175 Tremont Street",
"time": "14:00",
"format": "IMAX",
"price": 18.50
}
]
}
4. get_seat_map
Displays available and reserved seats for a specific showtime.
Input:
{
"showtime_id": "st001"
}
Output:
{
"showtime_id": "st001",
"movie": "Dune: Part Two",
"theater": "AMC Boston Common 19",
"date": "2025-10-28",
"time": "14:00",
"seat_map": [
{
"seat_number": "A5",
"row": "A",
"column": 5,
"is_available": true,
"price_tier": "Standard",
"price": 18.50
}
]
}
5. book_seats
Reserves selected seats for the user.
Input:
{
"showtime_id": "st001",
"seats": ["A5", "A6"],
"user_id": "user123"
}
Output:
{
"booking_id": "booking-uuid",
"status": "pending",
"movie": "Dune: Part Two",
"theater": "AMC Boston Common 19",
"date": "2025-10-28",
"time": "14:00",
"seats": ["A5", "A6"],
"total_price": 37.00
}
6. process_payment
Handles simulated payment transaction.
Input:
{
"booking_id": "booking-uuid",
"payment_method": "card",
"amount": 37.00
}
Output:
{
"payment_id": "payment-uuid",
"payment_status": "success",
"booking_id": "booking-uuid",
"receipt_url": "https://amc.com/receipts/payment-uuid",
"confirmation": {
"movie": "Dune: Part Two",
"theater": "AMC Boston Common 19",
"date": "2025-10-28",
"time": "14:00",
"seats": ["A5", "A6"],
"total_paid": 37.00
}
}
Example Conversation Flow 💬
Here's how a typical movie booking conversation would work:
-
User: "Find an action movie near me tonight."
- Server calls:
get_now_showing+get_recommendations - Returns: List of action movies with showtimes
- Server calls:
-
User: "Book two seats for Dune: Part Two at 8 PM."
- Server calls:
get_showtimes→get_seat_map→book_seats - Returns: Seat selection and booking confirmation
- Server calls:
-
User: "Pay with my card."
- Server calls:
process_payment - Returns: Payment confirmation with digital receipt
- Server calls:
Architecture 🏗️
amc-mcp/
├── src/
│ └── amc_mcp/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── data/
│ ├── movies.json # Movie catalog
│ ├── theaters.json # Theater locations
│ ├── showtimes.json # Showtime schedules
│ └── seats.json # Seat maps by showtime
├── config/
│ └── nginx.conf # Web server configuration
├── Dockerfile # Container configuration
├── docker-compose.yml # Multi-service orchestration
├── requirements.txt # Python dependencies
├── pyproject.toml # Package configuration
└── README.md # This file
Data Models 📊
Movie
{
"movie_id": str,
"title": str,
"rating": str, # PG, PG-13, R, etc.
"duration": int, # Minutes
"genre": str,
"description": str,
"poster_url": str
}
Theater
{
"theater_id": str,
"name": str,
"address": str,
"city": str,
"state": str,
"zip_code": str
}
Showtime
{
"showtime_id": str,
"movie_id": str,
"theater_id": str,
"date": str, # YYYY-MM-DD
"time": str, # HH:MM
"format": str, # Standard, IMAX, 3D, Dolby
"price": float
}
Development 👨💻
Adding New Movies
Edit data/movies.json to add new movies:
{
"movie_id": "mv011",
"title": "New Movie Title",
"rating": "PG-13",
"duration": 120,
"genre": "Action",
"description": "Description of the movie...",
"poster_url": "https://example.com/poster.jpg"
}
Adding New Theaters
Edit data/theaters.json:
{
"theater_id": "th011",
"name": "AMC New Location 15",
"address": "123 Main Street",
"city": "New City",
"state": "NY",
"zip_code": "12345"
}
Adding Showtimes
Edit data/showtimes.json and data/seats.json to add new showtimes and corresponding seat maps.
Testing
Manual Testing
You can test individual tools using the MCP inspector or by connecting to any MCP-compatible client.
Testing with Claude Desktop
- Configure Claude Desktop to connect to your MCP server
- Use natural language to test the booking flow
- Example: "Find me a sci-fi movie showing tonight in Boston"
Configuration ⚙️
Environment Variables
PYTHONPATH: Set to/app/srcfor proper module resolutionPYTHONUNBUFFERED: Set to1for real-time loggingMCP_LOG_LEVEL: Set logging level (DEBUG, INFO, WARNING, ERROR)
Docker Configuration
The server runs in a lightweight Python 3.11 container with:
- Non-root user for security
- Health checks for monitoring
- Volume mounts for data persistence
- Network isolation
Security Considerations 🔒
This is a mock implementation for demonstration purposes. In production:
- Payment Processing: Integrate with real payment gateways (Stripe, PayPal)
- Authentication: Add user authentication and authorization
- Data Validation: Implement comprehensive input validation
- Rate Limiting: Add API rate limiting
- Encryption: Use HTTPS and encrypt sensitive data
- Database: Replace JSON files with a real database
- Logging: Implement structured logging and monitoring
Future Enhancements 🔮
- Real AMC API Integration: Connect to actual AMC Theatres API
- User Accounts: Persistent user profiles and booking history
- Group Bookings: Support for multiple users booking together
- Loyalty Programs: AMC Stubs integration
- Mobile Tickets: Generate QR codes for mobile entry
- Seat Recommendations: AI-powered optimal seat suggestions
- Price Alerts: Notify users of discounts and promotions
- Social Features: Share movie plans with friends
- Accessibility: ADA-compliant seat selection
- Multi-language: International language support
Contributing 🤝
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-feature - Make your changes and add tests
- Commit your changes:
git commit -am 'Add new feature' - Push to the branch:
git push origin feature/new-feature - Submit a pull request
License 📄
This project is licensed under the MIT License - see the LICENSE file for details.
Support 💬
For questions, issues, or feature requests:
- Create an issue in the GitHub repository
- Check the documentation for common solutions
- Review the example conversation flows
Happy movie booking! 🍿🎬
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。