Analysis MCP

Analysis MCP

Provides cognitive tools for critical thinking and multi-perspective analysis of current affairs through structured prompts, including claim deconstruction, perspective comparison, and analysis through 9 analytical lenses (historical, economic, geopolitical, etc.).

Category
访问服务器

README

analysis-mcp

A FastMCP server for critical thinking and multi-perspective analysis of current affairs.

Uses the LLM-Orchestrator Pattern: Tools return structured prompts for the calling LLM to execute, enabling iterative complexity building through prompt chaining.

🧠 Core Concept: Prompt Chaining for Complexity

Instead of doing one analysis, chain operations to build increasingly sophisticated insights:

1. deconstruct_claim("AI will replace jobs")
   → Get structured breakdown
   
2. chain_analysis(previous_output, "extract_assumptions")
   → Find hidden assumptions in your analysis
   
3. chain_analysis(previous_output, "identify_contradictions")
   → Spot tensions in the argument
   
4. chain_analysis(previous_output, "steelman_argument")
   → Build strongest version of the claim
   
5. chain_analysis(previous_output, "suggest_next_step")
   → Get recommendation for deeper analysis

Each step builds on the last, creating layered, sophisticated thinking.

Features

Core Analytical Tools:

  • deconstruct_claim - Break down claims into components
  • compare_positions - Multi-perspective ideological analysis
  • apply_lens - Analyze through 9 frameworks (historical, economic, etc.)
  • get_trace - Retrieve previous analysis plans

🔗 Prompt Chaining Tools (NEW):

  • apply_operation - Apply 15+ analytical operations to any content
  • chain_analysis - Chain operations on previous LLM outputs
  • list_available_operations - Browse all available operations

15+ Analytical Operations:

Deconstructive:

  • extract_assumptions - Find implicit/explicit assumptions
  • identify_contradictions - Spot logical tensions
  • find_fallacies - Detect rhetorical manipulation

Constructive:

  • steelman_argument - Build strongest version
  • find_analogies - Identify relevant precedents
  • extract_principles - Derive universal patterns

Synthetic:

  • synthesize_perspectives - Merge viewpoints
  • elevate_abstraction - Raise to higher concepts
  • ground_in_specifics - Add concrete examples

Meta-analytical:

  • identify_gaps - Find missing elements
  • check_coherence - Verify logical consistency
  • suggest_next_step - Recommend next operation

Transformative:

  • convert_to_dialogue - Reframe as Socratic dialogue
  • extract_counterfactuals - Generate what-if scenarios
  • map_dependencies - Chart logical dependencies

Quick Start with Claude Desktop

  1. Install via uvx (recommended):

Edit your Claude Desktop config file:

  • MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

Add this to the mcpServers section:

{
  "mcpServers": {
    "analysis-mcp": {
      "command": "uvx",
      "args": [
        "git+https://github.com/YOUR_USERNAME/analysis_mcp",
        "analysis-mcp"
      ]
    }
  }
}
  1. Restart Claude Desktop

  2. Verify installation: Look for the 🔌 icon in Claude Desktop showing the analysis-mcp server is connected

Alternative: Local Development Installation

If you want to modify the code or run it locally:

# Clone the repo
git clone https://github.com/YOUR_USERNAME/analysis_mcp.git
cd analysis_mcp

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install in editable mode
pip install -e ".[dev]"

# Run tests
pytest -v

# Run server directly (for testing)
python -m analysis_mcp.server

For local development in Claude Desktop, update your config to point to the local path:

{
  "mcpServers": {
    "analysis-mcp": {
      "command": "python",
      "args": [
        "-m",
        "analysis_mcp.server"
      ],
      "cwd": "/absolute/path/to/analysis_mcp",
      "env": {
        "PYTHONPATH": "/absolute/path/to/analysis_mcp/src"
      }
    }
  }
}

🔄 Example Workflows

Workflow 1: Deep Claim Analysis

1. "Analyze: AI will replace all jobs in 10 years"
   → deconstruct_claim()
   → Get: assumptions, evidence, implications

2. "Now extract the assumptions from that analysis"
   → chain_analysis(prev, "extract_assumptions")
   → Get: implicit assumptions revealed

3. "Find contradictions in those assumptions"
   → chain_analysis(prev, "identify_contradictions")
   → Get: logical tensions

4. "Steelman the strongest version"
   → chain_analysis(prev, "steelman_argument")
   → Get: most defensible claim

Workflow 2: Multi-Lens Synthesis

1. apply_lens("Fed raises rates", "economic")
   → Economic analysis

2. apply_lens("Fed raises rates", "political")  
   → Political analysis

3. apply_operation(both_outputs, "synthesize_perspectives")
   → Unified framework

4. chain_analysis(synthesis, "identify_gaps")
   → Find what's missing

Workflow 3: Iterative Refinement

1. compare_positions("Climate policy")
   → Multi-perspective view

2. chain_analysis(output, "elevate_abstraction")
   → Broader systemic patterns

3. chain_analysis(output, "ground_in_specifics")
   → Concrete examples added

4. chain_analysis(output, "check_coherence")
   → Verify consistency

5. chain_analysis(output, "suggest_next_step")
   → AI recommends next operation

💡 Why This Approach?

Traditional Analysis: One-shot, limited depth

"Analyze X" → Single output → Done

Chained Analysis: Iterative, building complexity

"Analyze X" 
→ deconstruct 
→ extract assumptions 
→ find contradictions 
→ steelman argument 
→ identify gaps
→ synthesize
= Deep, multi-layered understanding

Benefits:

  • Build complexity incrementally - Each operation adds a layer
  • Provider-agnostic - Works with any LLM
  • No API keys needed - Server never calls external LLMs
  • Fully traceable - Every step logged with trace_id
  • Self-guided - suggest_next_step operation recommends what to do next
  • Composable - Mix with other MCP tools (Wikipedia, web search, etc.)

Available Lenses

  • historical - Compare to precedents and patterns
  • economic - Analyze resource flows and incentives
  • geopolitical - Examine power balances and strategy
  • psychological - Identify biases and manipulation
  • technological - Explore tech's role and impact
  • sociocultural - Analyze identity and narratives
  • philosophical - Apply ethical frameworks
  • systems - Map feedback loops and leverage points
  • media - Deconstruct framing and agenda-setting

Trace Storage

Analysis plans are logged to ~/.analysis_mcp/traces/ as JSON files. Each trace contains:

  • trace_id - Unique identifier
  • tool - Which tool was called
  • input - Original parameters
  • outline - Structured analysis plan
  • next_prompt - The prompt for LLM execution
  • timestamp - When it was created

Use get_trace(trace_id) to retrieve any previous analysis plan.

Troubleshooting

Server not connecting?

  • Verify uvx is installed: pip install uvx
  • Check Claude Desktop logs (Help → View Logs)
  • Ensure your config JSON is valid

Tools not appearing?

  • Restart Claude Desktop after config changes
  • Check the 🔌 icon shows "analysis-mcp" as connected

Contributing

Pull requests welcome! Please run tests before submitting:

pytest -v

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选