Analysis MCP
Provides cognitive tools for critical thinking and multi-perspective analysis of current affairs through structured prompts, including claim deconstruction, perspective comparison, and analysis through 9 analytical lenses (historical, economic, geopolitical, etc.).
README
analysis-mcp
A FastMCP server for critical thinking and multi-perspective analysis of current affairs.
Uses the LLM-Orchestrator Pattern: Tools return structured prompts for the calling LLM to execute, enabling iterative complexity building through prompt chaining.
🧠 Core Concept: Prompt Chaining for Complexity
Instead of doing one analysis, chain operations to build increasingly sophisticated insights:
1. deconstruct_claim("AI will replace jobs")
→ Get structured breakdown
2. chain_analysis(previous_output, "extract_assumptions")
→ Find hidden assumptions in your analysis
3. chain_analysis(previous_output, "identify_contradictions")
→ Spot tensions in the argument
4. chain_analysis(previous_output, "steelman_argument")
→ Build strongest version of the claim
5. chain_analysis(previous_output, "suggest_next_step")
→ Get recommendation for deeper analysis
Each step builds on the last, creating layered, sophisticated thinking.
Features
Core Analytical Tools:
deconstruct_claim- Break down claims into componentscompare_positions- Multi-perspective ideological analysisapply_lens- Analyze through 9 frameworks (historical, economic, etc.)get_trace- Retrieve previous analysis plans
🔗 Prompt Chaining Tools (NEW):
apply_operation- Apply 15+ analytical operations to any contentchain_analysis- Chain operations on previous LLM outputslist_available_operations- Browse all available operations
15+ Analytical Operations:
Deconstructive:
extract_assumptions- Find implicit/explicit assumptionsidentify_contradictions- Spot logical tensionsfind_fallacies- Detect rhetorical manipulation
Constructive:
steelman_argument- Build strongest versionfind_analogies- Identify relevant precedentsextract_principles- Derive universal patterns
Synthetic:
synthesize_perspectives- Merge viewpointselevate_abstraction- Raise to higher conceptsground_in_specifics- Add concrete examples
Meta-analytical:
identify_gaps- Find missing elementscheck_coherence- Verify logical consistencysuggest_next_step- Recommend next operation
Transformative:
convert_to_dialogue- Reframe as Socratic dialogueextract_counterfactuals- Generate what-if scenariosmap_dependencies- Chart logical dependencies
Quick Start with Claude Desktop
- Install via uvx (recommended):
Edit your Claude Desktop config file:
- MacOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add this to the mcpServers section:
{
"mcpServers": {
"analysis-mcp": {
"command": "uvx",
"args": [
"git+https://github.com/YOUR_USERNAME/analysis_mcp",
"analysis-mcp"
]
}
}
}
-
Restart Claude Desktop
-
Verify installation: Look for the 🔌 icon in Claude Desktop showing the analysis-mcp server is connected
Alternative: Local Development Installation
If you want to modify the code or run it locally:
# Clone the repo
git clone https://github.com/YOUR_USERNAME/analysis_mcp.git
cd analysis_mcp
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install in editable mode
pip install -e ".[dev]"
# Run tests
pytest -v
# Run server directly (for testing)
python -m analysis_mcp.server
For local development in Claude Desktop, update your config to point to the local path:
{
"mcpServers": {
"analysis-mcp": {
"command": "python",
"args": [
"-m",
"analysis_mcp.server"
],
"cwd": "/absolute/path/to/analysis_mcp",
"env": {
"PYTHONPATH": "/absolute/path/to/analysis_mcp/src"
}
}
}
}
🔄 Example Workflows
Workflow 1: Deep Claim Analysis
1. "Analyze: AI will replace all jobs in 10 years"
→ deconstruct_claim()
→ Get: assumptions, evidence, implications
2. "Now extract the assumptions from that analysis"
→ chain_analysis(prev, "extract_assumptions")
→ Get: implicit assumptions revealed
3. "Find contradictions in those assumptions"
→ chain_analysis(prev, "identify_contradictions")
→ Get: logical tensions
4. "Steelman the strongest version"
→ chain_analysis(prev, "steelman_argument")
→ Get: most defensible claim
Workflow 2: Multi-Lens Synthesis
1. apply_lens("Fed raises rates", "economic")
→ Economic analysis
2. apply_lens("Fed raises rates", "political")
→ Political analysis
3. apply_operation(both_outputs, "synthesize_perspectives")
→ Unified framework
4. chain_analysis(synthesis, "identify_gaps")
→ Find what's missing
Workflow 3: Iterative Refinement
1. compare_positions("Climate policy")
→ Multi-perspective view
2. chain_analysis(output, "elevate_abstraction")
→ Broader systemic patterns
3. chain_analysis(output, "ground_in_specifics")
→ Concrete examples added
4. chain_analysis(output, "check_coherence")
→ Verify consistency
5. chain_analysis(output, "suggest_next_step")
→ AI recommends next operation
💡 Why This Approach?
Traditional Analysis: One-shot, limited depth
"Analyze X" → Single output → Done
Chained Analysis: Iterative, building complexity
"Analyze X"
→ deconstruct
→ extract assumptions
→ find contradictions
→ steelman argument
→ identify gaps
→ synthesize
= Deep, multi-layered understanding
Benefits:
- ✅ Build complexity incrementally - Each operation adds a layer
- ✅ Provider-agnostic - Works with any LLM
- ✅ No API keys needed - Server never calls external LLMs
- ✅ Fully traceable - Every step logged with trace_id
- ✅ Self-guided -
suggest_next_stepoperation recommends what to do next - ✅ Composable - Mix with other MCP tools (Wikipedia, web search, etc.)
Available Lenses
- historical - Compare to precedents and patterns
- economic - Analyze resource flows and incentives
- geopolitical - Examine power balances and strategy
- psychological - Identify biases and manipulation
- technological - Explore tech's role and impact
- sociocultural - Analyze identity and narratives
- philosophical - Apply ethical frameworks
- systems - Map feedback loops and leverage points
- media - Deconstruct framing and agenda-setting
Trace Storage
Analysis plans are logged to ~/.analysis_mcp/traces/ as JSON files. Each trace contains:
trace_id- Unique identifiertool- Which tool was calledinput- Original parametersoutline- Structured analysis plannext_prompt- The prompt for LLM executiontimestamp- When it was created
Use get_trace(trace_id) to retrieve any previous analysis plan.
Troubleshooting
Server not connecting?
- Verify
uvxis installed:pip install uvx - Check Claude Desktop logs (Help → View Logs)
- Ensure your config JSON is valid
Tools not appearing?
- Restart Claude Desktop after config changes
- Check the 🔌 icon shows "analysis-mcp" as connected
Contributing
Pull requests welcome! Please run tests before submitting:
pytest -v
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。