android-mcp
A lightweight MCP server for Android operating system automation. This server provides tools to interact directly with Android devices and app interaction with control
README
🎯 SDLC Agent Workflow
AI-Powered Software Development Life Cycle Automation Platform
Transform your software development process with AI-powered automation. From meeting transcriptions to complete technical documentation, streamline your entire SDLC workflow.
🚀 What is SDLC Agent Workflow?
The SDLC Agent Workflow is a production-ready AI platform that automates key aspects of software development, starting with audio transcription and document generation, with a comprehensive roadmap to become a complete SDLC automation solution.
🎯 Current Capabilities (Production Ready ✅)
- 🎤 Audio Transcription: High-quality transcription using OpenAI Whisper models
- 🤖 AI Meeting Analysis: Generate key meeting points and summaries with OpenAI GPT
- 📋 PRD Generation: Transform discussions into industry-standard Product Requirements Documents
- 🔧 Android TRD Generation: Convert PRDs into comprehensive Android Technical Requirements Documents
- 🎨 Figma MCP Integration: Model Context Protocol server for comprehensive Figma design data extraction
- 📱 Android MCP Integration: AI-powered Android device automation with LLM integration for intelligent mobile testing and interaction
- 📁 Multi-Format Support: MP3, WAV, M4A, FLAC, AAC, OGG, WMA, MP4, MOV, AVI
- ⚙️ Configurable Settings: Extensive customization through environment variables
🔮 Future Vision (2025-2026 Roadmap)
Complete SDLC automation platform covering:
- Requirements & Planning → Design & Architecture → Development Support → Testing & Quality → Deployment & Operations → Documentation & Knowledge
⚡ Quick Start
Prerequisites
- Python 3.10 or higher
- OpenAI API key
uvpackage manager (recommended) orpip
Installation
-
Clone the repository
git clone git@github.com:tomdwipo/agent.git cd agent -
Install dependencies
# Using uv (recommended) uv sync # Or using pip pip install -r requirements.txt -
Configure environment
# Create .env file cp .env.example .env # Add your OpenAI API key echo "OPENAI_API_KEY=your_api_key_here" >> .env -
Launch the application
# Using uv uv run python transcribe_gradio.py # Or using python directly python transcribe_gradio.py -
Access the interface Open your browser to
http://localhost:7860
🎯 Features Overview
✅ Production Features
| Feature | Status | Description | Documentation |
|---|---|---|---|
| Audio Transcription | ✅ Complete | OpenAI Whisper integration with multi-format support | API Docs |
| AI Meeting Analysis | ✅ Complete | Key points extraction and meeting summaries | API Docs |
| PRD Generation v1.0 | ✅ Complete | 8-section industry-standard Product Requirements Documents | Feature Docs |
| Android TRD Generation v1.0 | ✅ Complete | 7-section Android Technical Requirements Documents | Feature Docs |
| Figma MCP Integration v1.0 | ✅ Complete | Model Context Protocol server for Figma design data extraction | Feature Docs |
| Android MCP Integration v1.0 | ✅ Complete | AI-powered Android device automation with LLM integration for intelligent mobile testing | Setup Guide |
📋 Planned Features (2025-2026)
| Phase | Timeline | Key Components | Expected Impact |
|---|---|---|---|
| Phase 1: Requirements & Planning | Q3 2025 | Enhanced PRD + Project Planning Agent | 50% planning time reduction |
| Phase 2: Design & Architecture | Q4 2025 | System Design + UI/UX Design Agents | 60% faster architecture documentation |
| Phase 3: Development Support | Q1 2026 | Code Generation + Development Standards | 70% boilerplate code reduction |
| Phase 4: Testing & Quality | Q2 2026 | Test Planning + Quality Assurance Agents | 80% test coverage automation |
| Phase 5: Deployment & Operations | Q3 2026 | DevOps + Infrastructure Management | 90% deployment automation |
| Phase 6: Documentation & Knowledge | Q4 2026 | Documentation + Knowledge Management | 75% documentation automation |
🏗️ Architecture
System Overview
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ UI Layer │ │ Service Layer │ │ Configuration │
│ │ │ │ │ │
│ • Gradio UI │◄──►│ • OpenAI Service│◄──►│ • Settings │
│ • Components │ │ • Whisper Service│ │ • Constants │
│ • Interface │ │ • File Service │ │ • Environment │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Technology Stack
- Backend: Python 3.10+, OpenAI API, Whisper
- Frontend: Gradio (Web UI)
- Package Management:
uvwithpyproject.toml - Configuration: Environment variables with
.envsupport - Testing: Comprehensive test suite with pytest
Project Structure
agent/
├── main.py # Main application entry point
├── transcribe_gradio.py # Gradio interface launcher
├── pyproject.toml # Project configuration
├── requirements.txt # Dependencies
├── config/ # Configuration management
│ ├── settings.py # Application settings
│ ├── constants.py # System constants
│ └── __init__.py
├── services/ # Core business logic
│ ├── openai_service.py # OpenAI API integration
│ ├── whisper_service.py# Audio transcription
│ ├── file_service.py # File operations
│ └── __init__.py
├── ui/ # User interface components
│ ├── gradio_interface.py# Main UI interface
│ ├── components.py # UI components
│ └── __init__.py
├── tests/ # Test suite
├── demos/ # Demo applications
└── docs/ # Comprehensive documentation
📚 Documentation
🎯 For Users
- Quick Start Guide - Get up and running quickly
- Features Overview - Complete feature documentation
- User Manual - Comprehensive user guide
🛠️ For Developers
- Architecture Overview - Technical system design
- API Reference - Complete API documentation
- Contributing Guide - Development workflow
- Testing Guide - Testing procedures
📋 For Project Managers & Stakeholders
- Complete Project Proposal - Full business case and roadmap
- Architecture Evolution - Technical progress history
- Feature Status Tracking - Development progress
🚀 Usage Examples
Basic Audio Transcription
from services.whisper_service import WhisperService
# Initialize service
whisper = WhisperService()
# Transcribe audio file
result = whisper.transcribe("meeting.mp3")
print(result["text"])
PRD Generation
from services.openai_service import OpenAIService
# Initialize service
openai_service = OpenAIService()
# Generate PRD from meeting transcript
prd = openai_service.generate_prd(transcript_text)
print(prd)
Complete Workflow
- Upload Audio → Transcribe meeting recording
- Generate Analysis → Extract key points and action items
- Create PRD → Transform discussion into structured requirements
- Generate TRD → Convert PRD into technical specifications
- Download Documents → Export all generated documents
🔧 Configuration
Environment Variables
# OpenAI Configuration
OPENAI_API_KEY=your_api_key_here
OPENAI_MODEL=gpt-4
OPENAI_MAX_TOKENS=4000
# Whisper Configuration
WHISPER_MODEL=base
WHISPER_LANGUAGE=auto
# Application Settings
DEBUG=false
LOG_LEVEL=INFO
Advanced Configuration
See Configuration API Documentation for complete configuration options.
🧪 Development
Setup Development Environment
# Clone repository
git clone git@github.com:tomdwipo/agent.git
cd agent
# Install development dependencies
uv sync --dev
# Run tests
uv run pytest
# Run with development settings
uv run python transcribe_gradio.py
Running Tests
# Run all tests
uv run pytest
# Run specific test file
uv run pytest tests/test_prd_services.py
# Run with coverage
uv run pytest --cov=services
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes
- Add tests for new functionality
- Run the test suite (
uv run pytest) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
See Contributing Guidelines for detailed information.
📈 Project Status & Roadmap
Current Status: Production Ready v1.0 ✅
- Core Foundation: Fully functional audio transcription and document generation
- Production Features: PRD and Android TRD generation complete
- Architecture: Modular, scalable design ready for expansion
- Documentation: Comprehensive documentation and testing
Success Metrics by Phase
- Phase 1: 50% planning time reduction
- Phase 2: 60% faster architecture documentation
- Phase 3: 70% boilerplate code reduction
- Phase 4: 80% test coverage automation
- Phase 5: 90% deployment automation
- Phase 6: 75% documentation automation
Complete Workflow Vision
Meeting/Discussion → Transcription → PRD → TRD → Architecture → Code → Tests → Deployment → Documentation
🤝 Community & Support
Getting Help
- Documentation: Comprehensive guides in docs/
- Issues: Report bugs and request features via GitHub Issues
- Discussions: Join community discussions
Contributing
We welcome contributions! See our Contributing Guide for:
- Code contribution guidelines
- Development setup instructions
- Testing requirements
- Documentation standards
📊 Metrics & Performance
Current Application Metrics
- Features Implemented: 5/5 core features (100%)
- Architecture Phases: 3/3 complete (Service Layer, Configuration, UI Components)
- Test Coverage: Comprehensive test suite
- Production Readiness: ✅ Ready for deployment
Performance Benchmarks
- Transcription Speed: Real-time processing for most audio formats
- PRD Generation: ~30 seconds for typical meeting transcript
- TRD Generation: ~45 seconds from PRD input
- Multi-format Support: 9 audio/video formats supported
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🎉 Acknowledgments
- OpenAI for Whisper and GPT API
- Gradio for the excellent web UI framework
- Python Community for the amazing ecosystem
- Contributors who help make this project better
📞 Contact & Links
- Repository: github.com/tomdwipo/agent
- Documentation: Complete Documentation Hub
- Project Proposal: SDLC Agent Workflow Proposal
- Issues: GitHub Issues
🚀 Ready to transform your SDLC workflow? Get started with the Quick Start guide above!
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。