AnyDB MCP Server

AnyDB MCP Server

Enables natural language database operations and semantic document search through SQLite and vector database integration. Converts plain English instructions into SQL queries and provides RAG capabilities for uploaded documents.

Category
访问服务器

README

AnyDB MCP Server

A Model Context Protocol (MCP) server that provides intelligent database operations through natural language processing. This server integrates SQLite databases with Ollama for AI-powered SQL generation and execution.

Features

Core Database Operations

  • Natural Language to SQL: Convert plain English instructions into SQL queries using Ollama
  • Universal Database Operations: Works with any SQLite table/entity without predefined schemas
  • MCP Integration: Seamlessly integrates with Claude Desktop and other MCP-compatible clients
  • Async Operations: Built on modern Python async/await for high performance
  • Safety First: Separate tools for read and write operations

Vector Database & RAG (NEW!)

  • File Embedding: Automatically convert files into vector embeddings for semantic search
  • Semantic Search: Find relevant content using natural language queries instead of exact keyword matching
  • RAG Support: Enable Claude Desktop to answer questions about uploaded documents with context
  • Smart Chunking: Intelligently splits large documents into overlapping chunks for better retrieval
  • Persistent Storage: ChromaDB-powered vector database with automatic embedding generation

Available Tools

Database Tools

1. query_entity

Query any table with natural language instructions.

Parameters:

  • entity_name (required): Name of the table to query
  • instruction (optional): Natural language query instruction (default: "SELECT all records")

Example: Query users table for active accounts

2. insert_entity

Insert records into any table using natural language descriptions.

Parameters:

  • entity_name (required): Name of the table
  • data (required): Data to insert (JSON or natural description)

Example: Insert a new user with email and name

3. update_entity

Update records in any table with conditions.

Parameters:

  • entity_name (required): Name of the table
  • instruction (required): Update instruction
  • conditions (optional): WHERE conditions

Example: Update user status to active where email matches

4. delete_entity

Delete records from any table with optional conditions.

Parameters:

  • entity_name (required): Name of the table
  • conditions (optional): WHERE conditions for deletion

Example: Delete inactive users older than 30 days

5. create_table

Create new tables with AI-generated schemas.

Parameters:

  • entity_name (required): Name of the new table
  • schema_description (required): Description of table schema

Example: Create a products table with name, price, and category

6. sql_query

Execute raw SQL SELECT queries directly.

Parameters:

  • query (required): SQL query to execute

Example: Direct SQL for complex joins and analytics

7. sql_execute

Execute raw SQL modification queries (INSERT, UPDATE, DELETE, CREATE, etc.).

Parameters:

  • query (required): SQL query to execute

Example: Direct SQL for complex data modifications

Vector Database Tools (NEW!)

8. add_file_to_vector_db

Add a file to the vector database for semantic search and RAG (Retrieval Augmented Generation).

Parameters:

  • filename (required): Name of the file
  • content (required): Content of the file (text)
  • metadata (optional): Optional metadata for the file

Example: Add a document about machine learning for later semantic search

9. search_vector_db

Search the vector database for relevant file content using semantic similarity.

Parameters:

  • query (required): Search query for semantic similarity
  • max_results (optional): Maximum number of results to return (default: 5)

Example: Find documents related to "neural networks and AI"

10. list_vector_files

List all files stored in the vector database.

Parameters: None

Example: View all documents available for search

11. remove_file_from_vector_db

Remove a file from the vector database.

Parameters:

  • filename (required): Name of the file to remove

Example: Delete outdated documents from the knowledge base

Installation

Prerequisites

  • Python 3.8+
  • Ollama running locally
  • Claude Desktop (for MCP integration)

Setup

  1. Clone the repository:
git clone https://github.com/iamayuppie/AnyDbApp.git
cd AnyDbApp
  1. Install dependencies:
pip install -r requirements.txt
  1. Start Ollama:
ollama serve --port 1434
ollama pull llama3.1  # or your preferred model
  1. Run the server:
python main.py

Claude Desktop Integration

Add this server to Claude Desktop by editing your config file:

Windows: %APPDATA%\Claude\claude_desktop_config.json

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{
    "mcpServers": {
      "anydb": {
        "command": "python",
        "args": ["C:\\Path\\To\\AnyDbApp\\mcp_server_stdio.py"],
        "env": {
          "PYTHONPATH": "C:\\Path\\To\\AnyDbApp"
        }
      }
    }
}

Restart Claude Desktop to connect the server.

Configuration

Ollama Settings

Default configuration in mcp_server.py:

  • Host: localhost
  • Port: 1434
  • Model: llama3.1

Database Settings

  • Default DB: anydb.sqlite (created automatically)
  • Location: Same directory as the server
  • Type: SQLite with foreign key constraints enabled

Usage Examples

Once integrated with Claude Desktop, you can use natural language:

Database Operations

  • "Create a users table with id, name, email, and created_at fields"
  • "Show me all active users from the last 30 days"
  • "Insert a new product: iPhone 15, price $999, category Electronics"
  • "Update all pending orders to processed where amount > 100"
  • "Delete test users where email contains 'test'"

Vector Database & File Operations

  • "Add this document to the knowledge base" (when attaching a file in Claude Desktop)
  • "Search for information about machine learning algorithms"
  • "Find documents related to user authentication and security"
  • "What does the uploaded contract say about payment terms?"
  • "Show me all documents I've added to the database"
  • "Remove the old privacy policy document"

Architecture

┌─────────────────┐    ┌──────────────┐    ┌─────────────────┐
│   Claude        │────│  MCP Server  │────│    Ollama       │
│   Desktop       │    │   (stdio)    │    │   (localhost)   │
│  + File Upload  │    │              │    │                 │
└─────────────────┘    └──────────────┘    └─────────────────┘
                              │
                              ▼
                    ┌──────────────────┐
                    │   Dual Storage   │
                    │                  │
                    │ ┌──────────────┐ │
                    │ │   SQLite     │ │  ← Structured Data
                    │ │   Database   │ │
                    │ └──────────────┘ │
                    │                  │
                    │ ┌──────────────┐ │
                    │ │  ChromaDB    │ │  ← Document Embeddings
                    │ │ Vector Store │ │     & Semantic Search
                    │ └──────────────┘ │
                    └──────────────────┘

Development

Project Structure

AnyDbApp/
├── main.py              # Clean entry point with startup info
├── mcp_server.py        # MCP server setup and tool routing
├── dbtool.py            # Database operations and SQL tools
├── filetool.py          # Vector database and file operations
├── requirements.txt     # Python dependencies
├── pyproject.toml      # Project metadata
└── README.md           # This file

Key Components

Core Modules:

  • main.py: Entry point with dependency checking and startup information
  • mcp_server.py: MCP protocol implementation, tool registration, and request routing
  • dbtool.py: Database operations, SQL generation, and data management
  • filetool.py: Vector database operations, file processing, and semantic search

Business Logic Classes:

  • DatabaseManager: Handles async SQLite operations and database connections
  • DatabaseTools: High-level database operations with natural language support
  • OllamaClient: Manages AI model communication for SQL generation
  • VectorDatabaseManager: Manages ChromaDB operations and document embeddings
  • FileTools: High-level file operations and semantic search functionality

Troubleshooting

Common Issues

  1. Server won't start: Check if Ollama is running on port 1434
  2. No tools showing in Claude: Verify MCP config path and restart Claude Desktop
  3. SQL errors: Check table names and ensure proper natural language descriptions
  4. Ollama connection failed: Confirm Ollama model is installed and accessible

Debug Mode

Run with Python's verbose mode for detailed logs:

python -v main.py

License

This project is open source. See LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Support

For issues and questions:

  • Check the troubleshooting section
  • Review Ollama and MCP documentation
  • Open an issue on the repository

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选