
Apollo.io MCP Server
Enables AI assistants to interact with Apollo.io API for sales and marketing activities. Provides tools to search for companies and contacts, enrich person and organization data, and manage accounts with comprehensive lead generation capabilities.
README
Apollo.io MCP Server
A Model Context Protocol (MCP) server that provides tools for interacting with the Apollo.io API. This server enables AI assistants to search for accounts, enrich people and organization data, and retrieve contact information.
Features
Account Management
- Search Accounts: Find companies by name, location, employee count, and industry
- Get Account Details: Retrieve comprehensive account information by ID
- Create Accounts: Add new accounts to your Apollo.io database
- Update Accounts: Modify existing account information
People & Contact Data
- Search People: Find contacts by job title, seniority, company, and location
- Enrich Person: Get detailed contact information including emails and phone numbers
- Bulk Enrichment: Enrich multiple people or organizations simultaneously
Organization Data
- Enrich Organizations: Get detailed company information from domain
- Bulk Organization Enrichment: Enrich up to 10 companies at once
- Technology Stack: See what technologies companies use
- Financial Data: Access funding information and revenue data
Additional Features
- Persona Information: Access created persona data and counts
- Intent Data: Integration ready for Bombora intent data
- Email Accounts: Manage email accounts for sequences
- Opportunities: Search and manage sales opportunities
- Health Checks: Verify API connectivity and authentication
Prerequisites
- Python 3.8 or higher
- UV package manager
- Apollo.io API key
Installation
-
Clone or create the project:
mkdir apollo-mcp-server cd apollo-mcp-server
-
Install UV (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh
-
Install dependencies:
uv sync
-
Set up environment variables:
cp .env.example .env # Edit .env and add your Apollo.io API key
Configuration
Apollo.io API Key
- Log in to your Apollo.io account
- Go to Settings → Integrations → API
- Generate or copy your API key
- Add it to your
.env
file:APOLLO_API_KEY=your_actual_api_key_here
Usage
Running the Server
uv run python src/apollo_mcp_server.py
Or using the installed script:
uv run apollo-mcp-server
Available Tools
Account Search
search_accounts({
"q_organization_name": "Google",
"organization_locations": ["California, US"],
"organization_num_employees_ranges": ["1000,10000"],
"page": 1,
"per_page": 25
})
People Search
search_people({
"q_organization_domains": "apollo.io\ngoogle.com",
"person_titles": ["CEO", "CTO", "VP Engineering"],
"person_seniorities": ["senior", "manager"],
"organization_locations": ["California, US"],
"page": 1,
"per_page": 10
})
Person Enrichment
enrich_person({
"first_name": "Tim",
"last_name": "Zheng",
"email": "tim@apollo.io",
"organization_name": "Apollo",
"domain": "apollo.io",
"linkedin_url": "http://www.linkedin.com/in/tim-zheng-677ba010",
"reveal_personal_emails": true,
"reveal_phone_number": false
})
Organization Enrichment
enrich_organization({
"domain": "apollo.io"
})
Bulk Organization Enrichment
bulk_enrich_organizations([
"apollo.io",
"google.com",
"microsoft.com"
])
API Endpoints Covered
/v1/accounts/search
- Account search/v1/accounts/{id}
- Get account by ID/v1/accounts
- Create/update accounts/v1/mixed_people/search
- People search/v1/people/match
- Person enrichment/api/v1/people/bulk_match
- Bulk people enrichment/v1/organizations/enrich
- Organization enrichment/api/v1/organizations/bulk_enrich
- Bulk organization enrichment/v1/opportunities/search
- Opportunities search/v1/email_accounts
- Email accounts/v1/auth/health
- Health check
Error Handling
The server includes comprehensive error handling for:
- Invalid API keys
- Rate limiting
- Network errors
- Invalid request parameters
- API response errors
All errors are returned in a structured format with descriptive messages.
Rate Limiting
Apollo.io has different rate limits for different endpoints:
- Single enrichment endpoints: Standard rate limits
- Bulk enrichment endpoints: 1/10th of standard rate limits
- Search endpoints: Higher rate limits for pagination
The server respects these limits and will return appropriate error messages if limits are exceeded.
Credit Usage
Different Apollo.io operations consume different types of credits:
- Email Credits: 1 credit per verified email found
- Export Credits: 1 credit per non-empty record (newer plans)
- Phone Credits: Additional charges for phone number reveals
Development
Running Tests
uv run pytest
Code Formatting
uv run black src/
uv run isort src/
Type Checking
uv run mypy src/
Integration with AI Assistants
This MCP server can be used with AI assistants that support the Model Context Protocol, such as:
- Claude Desktop
- Cody
- Continue
- Any MCP-compatible tool
Configure your AI assistant to connect to this server to enable Apollo.io functionality.
Persona and Intent Data
Persona Information
The server provides access to persona counts and created persona information through the account and organization endpoints. Persona data helps understand the types of contacts and their roles within organizations.
Intent Data Integration
While Apollo.io doesn't directly provide Bombora intent data through their standard API, the server is structured to easily integrate intent data when available. This typically requires:
- Separate Bombora API integration
- Data correlation between Apollo.io contacts and Bombora intent signals
- Custom enrichment workflows
Contact Apollo.io support for information about intent data partnerships and availability.
Support
For issues with this MCP server:
- Check the error messages and logs
- Verify your API key is valid
- Ensure you have sufficient API credits
- Check Apollo.io API documentation for any changes
For Apollo.io API issues:
- Visit Apollo.io support documentation
- Contact Apollo.io customer support
- Check API status page
License
MIT License - see LICENSE file for details.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。