AppSignal MCP
Enables AI assistants to query and fetch error and performance monitoring data from AppSignal through the Model Context Protocol. Supports searching and retrieving detailed information about application errors and performance samples with flexible filtering options.
README
AppSignal MCP
A Model Context Protocol (MCP) server for AppSignal monitoring API integration. This server allows AI assistants to directly query and fetch error and performance data from AppSignal through the MCP protocol.
Features
- Fetch details about specific error or performance samples
- Search for errors, performance samples, or both with flexible filters
- Integration with AppSignal's Error and Performance Monitoring APIs
Prerequisites
- Bun runtime
- AppSignal account and API token
- Application ID from your AppSignal dashboard
Installation
# Clone the repository
git clone https://github.com/pauldub/appsignal-mcp.git
cd appsignal-mcp
# Install dependencies
bun install
Configuration
Create a .env file in the root directory with your AppSignal credentials:
# Server configuration
PORT=3000
LOG_LEVEL=info
# AppSignal configuration
APPSIGNAL_API_TOKEN=your-api-token
Usage
Starting the Server
# Run the server
bun start
# Development mode with auto-reload
bun dev
# Run tests
bun test
# Build a standalone executable
bun run build
CLI Options
appsignal-mcp --appsignal-api-token your-token
Available options:
--appsignal-api-token <token>- AppSignal API token--log-level <level>- Logging level (debug, info, warn, error)--port <port>- Server port number
MCP Tools
1. get_sample
Gets details about a specific sample by ID (error or performance).
Parameters:
sampleId(string, required): The AppSignal sample IDappId(string, required): The AppSignal application ID
2. search_samples
Searches for samples in an application with optional filters.
Parameters:
appId(string, required): The AppSignal application IDsample_type(string, optional): Type of samples to search - "all", "errors", or "performance" (defaults to "errors")exception(string, optional): Filter by exception name (e.g., "NoMethodError") - only applicable for error samplesaction_id(string, optional): Filter by action name (e.g., "BlogPostsController-hash-show")since(string/number, optional): Start timestamp in UTC (timestamp or ISO format)before(string/number, optional): End timestamp in UTC (timestamp or ISO format)limit(number, optional): Maximum number of samples to return (defaults to 10)count_only(boolean, optional): Only return the count, not the samples
Claude Integration
To use this MCP server with Claude, create a .mcp.json file in your Claude Code workspace:
{
"mcpServers": {
"appsignal-mcp": {
"type": "stdio",
"command": "bun",
"args": [
"run",
"start"
],
"env": {
"APPSIGNAL_API_TOKEN": "your-api-token"
}
}
}
}
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。