arbor
Arbor is a local-first, high-performance developer tool designed to bridge the gap between static code analysis and AI-driven development.
README
<p align="center"> <img src="docs/assets/arbor-logo.svg" alt="Arbor" width="120" height="120" /> </p>
<h1 align="center">Arbor</h1>
<p align="center"> <strong>The Graph-Native Intelligence Layer for Code</strong><br> <em>Stop RAG-ing. Start navigating.</em> </p>
<p align="center"> <a href="#quick-start">Quick Start</a> • <a href="#why-arbor">Why Arbor?</a> • <a href="#features">Features</a> • <a href="#the-unified-nervous-system">Architecture</a> • <a href="docs/PROTOCOL.md">Protocol</a> • <a href="CONTRIBUTING.md">Contributing</a> </p>
<p align="center"> <a href="https://github.com/Anandb71/arbor/actions"><img src="https://img.shields.io/github/actions/workflow/status/Anandb71/arbor/rust.yml?style=flat-square&label=CI" alt="CI" /></a> <img src="https://img.shields.io/badge/release-v0.1.0-blue?style=flat-square" alt="Release" /> <img src="https://img.shields.io/badge/license-MIT-green?style=flat-square" alt="License" /> <img src="https://img.shields.io/badge/rust-1.70+-orange?style=flat-square" alt="Rust" /> <img src="https://img.shields.io/badge/flutter-3.0+-blue?style=flat-square" alt="Flutter" /> <img src="https://img.shields.io/badge/parse-144ms-gold?style=flat-square" alt="144ms Parse" /> <a href="https://glama.ai/mcp/servers/Anandb71/arbor"><img src="https://glama.ai/mcp/servers/Anandb71/arbor/badge" alt="Glama MCP Server" /></a> </p>
Why Arbor?
The Vector RAG Problem: Most AI coding assistants treat your codebase like a bag of text. They embed chunks into vectors and hope similarity search finds the right context. The result? Hallucinated connections, missing dependencies, and refactors that break everything downstream.
Arbor thinks differently.
We parse your code into an Abstract Syntax Tree using Tree-sitter, then build a living graph where every function, class, and variable is a node, and every import, call, and implementation is an edge. When an AI asks "where is authentication handled?", Arbor doesn't grep for "auth" — it traces the call graph to find the actual service that initiates the flow.
Traditional RAG: Arbor:
"auth" → 47 results "auth" → AuthController
├── validates via → TokenMiddleware
├── queries → UserRepository
└── emits → AuthEvent
Quick Start
Option 1: Download Pre-built Binary (Recommended)
Download arbor-windows-v0.1.0.zip from the Releases page.
# Unzip and add to PATH, then:
cd your-project
arbor init
arbor index
arbor bridge --viz # Starts server + opens visualizer
Option 2: Build from Source
# Clone and build
git clone https://github.com/Anandb71/arbor.git
cd arbor/crates
cargo build --release
# Build visualizer (requires Flutter)
cd ../visualizer
flutter build windows
That's it. Your IDE or AI agent can now connect to ws://localhost:7433 and query the graph.
Features
AST-Graph Intelligence
Every code entity becomes a queryable node. Arbor understands scope, shadowing, and namespace isolation — so when you ask for context, you get the exact logical block, not keyword-matched noise.
Sub-100ms Incremental Sync
Arbor watches your files and re-parses only the changed AST nodes. In a 100k-line monorepo, saving a file triggers a ~15ms update. You'll never notice it running.
Blast Radius Analysis
Refactoring a function? Arbor traces every caller, every consumer, every downstream dependency. See the full impact before you break production.
Semantic Ranking
Not all code is equal. Arbor ranks nodes by "centrality" — a function called by 50 others is more architecturally significant than a one-off utility. Context windows get the important stuff first.
Logic Forest Visualizer
The optional desktop app renders your codebase as an interactive force-directed graph. Custom shaders create bloom and glow effects as you navigate. Features include:
- Follow Mode: Camera automatically tracks the node the AI is focusing on
- Low GPU Mode: Disable effects for better performance on older hardware
- Real-time Sync: Graph updates as you edit code
<p align="center"> <img src="docs/assets/visualizer-screenshot.png" alt="Arbor Visualizer" width="800" /> <br> <em>The Logic Forest Visualizer rendering 27,676 nodes with bloom effects</em> </p>
Health Check
Verify your environment with a single command:
<p align="center"> <img src="docs/assets/cli-health-check.png" alt="Arbor Health Check" width="500" /> </p>
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ Your IDE / AI Agent │
└─────────────────────────────────────────────────────────────────┘
│
│ WebSocket (Arbor Protocol)
▼
┌─────────────────────────────────────────────────────────────────┐
│ Context Sidecar │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │ Protocol │ │ Ranking │ │ Discovery │ │
│ │ Handler │ │ Engine │ │ Engine │ │
│ └──────────────┘ └──────────────┘ └──────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Arbor Graph │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │ Nodes │ │ Edges │ │ Relationships │ │
│ │ (Entities) │ │ (Links) │ │ (Semantic) │ │
│ └──────────────┘ └──────────────┘ └──────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Pulse Indexer │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │ Tree-sitter │ │ Watcher │ │ Delta Sync │ │
│ │ Parser │ │ (notify) │ │ Engine │ │
│ └──────────────┘ └──────────────┘ └──────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Your Codebase │
│ TypeScript • Rust • Python │
└─────────────────────────────────────────────────────────────────┘
The Protocol
The Arbor Protocol is a simple JSON-RPC interface over WebSocket. Here's what your AI agent can ask:
// Find the architectural root for a concept
{
"method": "discover",
"params": { "query": "user authentication" }
}
// Get the blast radius for a function
{
"method": "impact",
"params": { "node": "UserService.validateToken" }
}
// Retrieve ranked context for a task
{
"method": "context",
"params": {
"task": "refactor the payment flow",
"maxTokens": 8000
}
}
See docs/PROTOCOL.md for the full specification.
Supported Languages
| Language | Status | Parser |
|---|---|---|
| TypeScript | ✅ | tree-sitter-typescript |
| JavaScript | ✅ | tree-sitter-typescript |
| Rust | ✅ | tree-sitter-rust |
| Python | ✅ | tree-sitter-python |
| Go | 🚧 | Coming soon |
| Java | 🚧 | Coming soon |
Adding a new language? See our language contribution guide.
Project Structure
arbor/
├── crates/ # Rust workspace
│ ├── arbor-core/ # AST parsing, Tree-sitter integration
│ ├── arbor-graph/ # Graph schema, relationships, ranking
│ ├── arbor-watcher/ # File watching, incremental sync
│ ├── arbor-server/ # WebSocket server, protocol handler
│ └── arbor-cli/ # Command-line interface
├── visualizer/ # Flutter desktop app
│ ├── lib/
│ │ ├── core/ # Theme, state management
│ │ ├── graph/ # Force-directed layout
│ │ └── shaders/ # GLSL bloom/glow effects
│ └── shaders/ # Raw GLSL files
└── docs/ # Extended documentation
Performance
We obsess over speed because slow tools don't get used.
| Metric | Target | Actual |
|---|---|---|
| Initial index (10k files) | < 5s | ~2.3s |
| Incremental update | < 100ms | ~15ms |
| Query response | < 50ms | ~8ms |
| Memory (100k LOC) | < 200MB | ~120MB |
Benchmarks run on M1 MacBook Pro. Your mileage may vary, but not by much.
Contributing
We love contributors. Whether you're fixing a typo, adding a language parser, or building something entirely new — you're welcome here.
- Read CONTRIBUTING.md
- Check the good first issues
- Join the discussion in GitHub Discussions
Roadmap
- [x] Phase 1: Core indexer and CLI
- [x] Phase 2: Logic Forest visualizer ✅
- [x] Phase 3: VS Code extension ✅
- [x] Phase 4: Agentic Bridge (MCP) ✅
- [x] Phase 5: Linux ARM64/AMD64 + macOS ARM64 CI/CD ✅
- [ ] Phase 6: Language server protocol support
- [ ] Phase 7: Go and Java parser support
Security
Arbor is designed with security in mind:
- No data exfiltration: All indexing happens locally; no code leaves your machine
- No API keys required: Works entirely offline
- No telemetry: Zero phone-home behavior
- Open source: Full source code available for audit
The Unified Nervous System
Arbor v0.1.0 is feature-complete. The entire stack is now synchronized:
Claude asks about AuthController
│
▼
┌─────────────────┐
│ Arbor Bridge │ ← MCP Server (stdio)
│ (arbor-mcp) │
└────────┬────────┘
│ trigger_spotlight()
▼
┌─────────────────┐
│ SyncServer │ ← WebSocket broadcast
│ (port 8080) │
└────────┬────────┘
│ FocusNode message
┌───────┴───────┐
│ │
▼ ▼
┌─────────┐ ┌─────────┐
│ VS Code │ │ Forest │
│ Golden │ │ Camera │
│Highlight│ │Animation│
│ #FFD700 │ │ 600ms │
└─────────┘ └─────────┘
Experience: Ask Claude, "How does auth work?" → Watch your IDE highlight the file → Watch the Visualizer fly to the node.
CLI Commands
| Command | Description |
|---|---|
arbor init |
Creates .arbor/ config directory |
arbor index |
Full index of the codebase |
arbor query <q> |
Search the graph |
arbor serve |
Start the sidecar server |
arbor export |
Export graph to JSON |
arbor status |
Show index status |
arbor viz |
Launch the Logic Forest visualizer |
arbor bridge |
Start MCP server for AI integration |
arbor bridge --viz |
MCP + Visualizer together |
arbor check-health |
System diagnostics and health check |
License
MIT — use it however you want. See LICENSE for details.
<p align="center"> <strong>Built for developers who think code is more than text.</strong> </p>
<p align="center"> <em>"The forest is mapped. The AI is walking the path."</em> </p>
<p align="center"> <a href="https://github.com/Anandb71/arbor">⭐ Star us on GitHub</a> </p>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。