AskTheApi Team Builder

AskTheApi Team Builder

Agent network builder for communicating with openapi apis. Based in autogen

AlexAlbala

开发者工具
访问服务器

README

AskTheApi Team Builder

PyPI version License: MIT Python Versions

A high-level Python library for building and managing networks of autonomous agents that collaborate to solve complex tasks. It's designed to work seamlessly with APIs defined using the OpenAPI standard. The library provides a clean, type-safe interface for creating, configuring, and running teams of agents, making it easy to orchestrate multi-agent workflows with minimal boilerplate.

Features

  • 🚀 Effortless Agent Network Creation: Quickly build agent networks with custom tools and capabilities based on OpenAPI specifications.

  • 🤝 Team-Based Collaboration: Easily define agent teams with automatic coordination handled by a built-in planning agent.

  • 📡 Streaming Interactions: Stream agent communication in real-time for more dynamic and responsive workflows.

  • 🔧 Built-in HTTP Client: Simplify tool implementation with an integrated HTTP client ready to call external APIs.

  • ✨ Type Safety with Pydantic: Leverage Pydantic models for robust data validation and clear type definitions.

  • 🎯 Clean and Intuitive API: Designed for developers—minimal boilerplate, maximum clarity.

Installation

pip install asktheapi-team-builder

Quick Start

Here's how to use the package:

1. Create agents from OpenAPI spec

from asktheapi_team_builder import TeamBuilder, Agent, Tool, Message, APISpecHandler
from typing import List
async def create_agents_from_spec():
    # Initialize handlers
    api_spec_handler = APISpecHandler()
    
    # Download and parse OpenAPI spec
    spec_content = await api_spec_handler.download_url_spec("https://api.example.com/openapi.json")
    
    # Classify endpoints into logical groups
    classification_result = await api_spec_handler.classify_spec(
        spec_content
    )
    
    # Generate agents for each group
    agents = []
    for group_spec in classification_result.specs:
        agent_result = await api_spec_handler.generate_agent_for_group(
            group_spec,
            spec_content
        )
        agents.append(agent_result)
    
    return agents

2. Build and run a team

async def run_agent_team(agents: List[Agent], query: str):
    # Initialize team builder
    team_builder = TeamBuilder(
        model="gpt-4",
        model_config={"temperature": 0.7}
    )
    
    # Build the team
    team = await team_builder.build_team(agents)
    
    # Create messages
    messages = [
        Message(
            role="user",
            content=query
        )
    ]
    
    # Run the team with streaming
    async for event in team_builder.run_team(team, messages, stream=True):
        if isinstance(event, ChatMessage):
            print(f"{event.source}: {event.content}")

Example usage

async def main():
    # Create agents from spec
    api_agents = await create_agents_from_spec()
    
    # Combine with manual agents
    all_agents = [weather_agent] + api_agents
    
    # Run the team
    await run_agent_team(
        all_agents,
        "What's the weather like in London and how might it affect local businesses?"
    )

Custom Headers and Configuration

You can configure the team builder with custom headers and model settings:

team_builder = TeamBuilder(
    model="gpt-4",
    model_config={
        "temperature": 0.7,
        "default_headers": {
            "Authorization": "Bearer your-token",
            "Custom-Header": "custom-value"
        }
    }
)

# Run team with extra headers for specific requests
team = await team_builder.build_team(agents)
result = await team_builder.run_team(
    team,
    messages,
    extra_headers={"Request-ID": "123"}
)

MCP (Model Control Protocol) Support

The library includes built-in support for Model Control Protocol, allowing you to expose your agent teams as API endpoints with automatic tool generation from OpenAPI specifications.

from asktheapi_team_builder import MCPService, MCPConfig

# Configure MCP service
mcp_config = MCPConfig(
    transport="sse",  # Server-Sent Events transport
    port=8000,        # Port to run the MCP server
    name="asktheapi_mcp"  # Service name
)

# Initialize MCP service
mcp_service = MCPService(mcp_config)

# Start MCP server with OpenAPI spec
await mcp_service.start_from_spec(
    url_spec="https://api.example.com/openapi.json",
    headers={"Authorization": "Bearer your-token"}
)

The MCP service will:

  • Automatically download and parse the OpenAPI specification
  • Classify endpoints into logical groups
  • Generate appropriate tools for each group
  • Expose these tools through a Model Control Protocol interface
  • Handle real-time streaming of agent interactions

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Setup

# Clone the repository
git clone https://github.com/alexalbala/asktheapi-team-builder.git
cd asktheapi-team-builder

# Install dependencies
pip install -e ".[dev]"

# Run tests
pytest

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Built on top of Microsoft's AutoGen
  • Inspired by the need for a higher-level interface for agent team management

推荐服务器

Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
MCP Package Docs Server

MCP Package Docs Server

促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。

精选
本地
TypeScript
Claude Code MCP

Claude Code MCP

一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。

精选
本地
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。

精选
本地
JavaScript
mermaid-mcp-server

mermaid-mcp-server

一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。

精选
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

精选
TypeScript
Linear MCP Server

Linear MCP Server

一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

精选
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Curri MCP Server

Curri MCP Server

通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。

官方
本地
JavaScript