AssemblyAI MCP Server
Enables AI assistants to transcribe audio files from URLs or local paths using AssemblyAI's services, with support for speaker diarization, language detection, and asynchronous job management through a standardized MCP interface.
README
AssemblyAI MCP Server
A Model Context Protocol (MCP) server that provides access to AssemblyAI's transcription services. This server enables AI assistants to transcribe audio files and manage transcription jobs through a standardized interface.
Vibe Code Spectrum
On a scale of 1 to 10, 10 being the most vibey, this is a 9.
Features
- Audio transcription from URLs and local files
- Asynchronous job submission for large files
- Transcript retrieval and status checking
- Resource access to transcript data
- Type-safe implementation with Zod validation
- Error handling and graceful shutdown
Installation
- Clone or create this project directory
- Install dependencies:
npm install - Set up your AssemblyAI API key (see Configuration section)
- Build the TypeScript code:
npm run build
Configuration
You need an AssemblyAI API key to use this server. Get one from AssemblyAI.
Set the environment variable:
export ASSEMBLYAI_API_KEY="your-api-key-here"
Or create a .env file:
ASSEMBLYAI_API_KEY=your-api-key-here
Usage
Running the Server
You can run the AssemblyAI MCP server in several ways:
Direct execution with npx/pnpm dlx (recommended)
# Using npx
npx assembly-ai-mcp@latest
# Using pnpm dlx
pnpm dlx assembly-ai-mcp@latest
Adding to Claude Code
claude mcp add assembly-ai-mcp --scope user -- pnpm dlx assembly-ai-mcp@latest
Local development
Start the MCP server:
npm start
For development with auto-rebuild:
npm run watch
MCP Tools
The server provides the following tools:
transcribe_url
Transcribe audio from a remote URL and wait for completion.
Parameters:
audioUrl(string, required): URL of the audio fileoptions(object, optional): Transcription optionsspeaker_labels(boolean): Enable speaker diarizationlanguage_code(string): Specify language (e.g., "en")punctuate(boolean): Add punctuationformat_text(boolean): Format text for readability
Example:
{
"audioUrl": "https://example.com/audio.mp3",
"options": {
"speaker_labels": true,
"punctuate": true
}
}
transcribe_file
Transcribe audio from a local file path and wait for completion.
Parameters:
filePath(string, required): Local path to the audio fileoptions(object, optional): Same astranscribe_url
Example:
{
"filePath": "/path/to/audio.wav",
"options": {
"language_code": "en"
}
}
submit_transcription
Submit audio for transcription without waiting for completion. Returns immediately with a job ID.
Parameters:
audio(string, required): URL or local file pathoptions(object, optional): Same transcription options
Example:
{
"audio": "https://example.com/large-audio.mp3",
"options": {
"speaker_labels": true
}
}
get_transcript
Retrieve the status and results of a transcription job.
Parameters:
transcriptId(string, required): The transcript ID returned from previous calls
Example:
{
"transcriptId": "1234567890"
}
MCP Resources
transcript://{id}
Access transcript data directly by ID. Provides structured JSON with all transcript information.
Example URI: transcript://1234567890
Returns:
{
"id": "1234567890",
"status": "completed",
"text": "Hello, this is a test transcription...",
"confidence": 0.95,
"words": [...],
"utterances": [...],
"created": "2024-01-01T00:00:00Z",
"completed": "2024-01-01T00:01:30Z"
}
Integration Examples
With Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"assemblyai": {
"command": "node",
"args": ["/path/to/assemblyai-mcp-server/dist/index.js"],
"env": {
"ASSEMBLYAI_API_KEY": "your-api-key-here"
}
}
}
}
With Other MCP Clients
The server uses stdio transport, so it's compatible with any MCP client that supports this transport method.
Workflow Examples
Quick Transcription
- Use
transcribe_urlortranscribe_filefor immediate results - The tool waits for completion and returns the full transcript
Async Processing
- Use
submit_transcriptionfor large files - Use
get_transcriptto check status and retrieve results - Use the
transcript://resource for structured data access
Speaker Identification
{
"audioUrl": "https://example.com/meeting.mp3",
"options": {
"speaker_labels": true,
"punctuate": true,
"format_text": true
}
}
Error Handling
The server provides detailed error messages for common issues:
- Missing API key: Server won't start without
ASSEMBLYAI_API_KEY - Invalid audio URLs: Clear error messages for inaccessible files
- File not found: Helpful messages for local file issues
- API errors: AssemblyAI error messages passed through
- Invalid transcript IDs: Clear feedback for non-existent transcripts
Development
Building
npm run build
Development Mode
npm run dev
Watch Mode
npm run watch
Requirements
- Node.js 18.0.0 or higher
- AssemblyAI API key
- MCP-compatible client
License
MIT License
Support
For AssemblyAI API issues, visit AssemblyAI Documentation. For MCP protocol questions, see Model Context Protocol.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。